

SYLLABUS

Core, Complementary & Open Courses

UG PROGRAMME IN MATHEMATICS

Under Choice Based Credit Semester System

FAROOK COLLEGE

(AUTONOMOUS)

www.farookcollege.ac.in

CERTIFICATE

I hereby certify that the documents attached are the bonafide copies of the syllabus of Core Courses offered to B.Sc Mathematics programme and Complementary & Open Courses offered by the Department of Mathematics to be effective from 2022 admission onwards.

Principal

Date: 01 June 2023 Place: Farook College

TABLE OF CONTENT

SI. No.	Particulars		Page
1	Members of the Boar	d of Studies	iii
2	Programme Specific	Outcomes	V
3	Scheme of the Progra	amme	vi
4	Credit Distribution		ix
		Core Course	х
		Elective Course	xi
5	Course Structure	Open Course	xii
		Complementary Course	xii
6	Evaluation and Gradi	ing	xiii
		Core Course	XV
_		Elective Course	lxxxix
7	Detailed Syllabus	Open Course	cviii
		Complementary Course	CXXV

MEMBERS OF BOARD OF STUDIES

CHAIRMAN

1. Mr. Mohammed Nishad Maniparambath

Asst.Professor& HoD Dept. of Mathematics Farook College (Autonomous) Ph: 9947698585, e-mail: <u>mohamednishad@farookcollege.ac.in</u>

MEMBERS

1. Dr. Shefeeq. T

Asst. Professor, Dept. of Mathematics, Farook College (Autonomous) Ph: 9947698585, e-mail: <u>shefeeq@farookcollege.ac.in</u>

2. Ms. P. Jamsheena

Asst.Professor Dept. of Mathematics Farook College (Autonomous), Ph: 9946632337, e-mail: <u>panikkarajamsheena@gmail.com</u>

3. Mr. Rabeeb Ali V.P

Asst.Professor Dept. of Mathematics Farook College (Autonomous) Ph: 9061757511, e-mail: <u>rabeeb@farookcollege.ac.in</u>

4. Ms. Aysha Hadya K

Asst. Professor Dept. of Mathematics Farook College (Autonomous) Ph: 940081566, e-mail: <u>ayshahadya@farookcollege.ac.in</u>

EXPERTS NOMINATED BY THE ACADEMIC COUNCIL

1. Dr. Jahfar T. K

Asst. Professor Dept. of Mathematics PSMO College, Tirurangadi Ph: 9400796604, e-mail: jahfartk@gmail.com

2. Mr. Anas E

Asst. Professor Dept. of Mathematics M.E.S. Mampad College Ph: 9447445167, e-mail: <u>anas.edarath@gmail.com</u>

UNIVERSITY NOMINEE

Dr. Vinod Kumar P Associate Professor, Dept. of Mathematics TMG College, Tirur

REPRESENTATION FROM INDUSTRY OR CORPORATES

Mr. Annal Abdussalam P T
 Data Scientist, Target, Embassy
 Manyata Tech Park, Bengaluru
 Ph: 9747029348, email: <u>amalabdu@gmail.com</u>

Ph: 9446986177, Email: vinodunical@gmail.com

MERITORIOUS ALUMNUS

 Mr. Riyasudheen K Research Scholar, NIT Calicut Ph: 7561004841, e-mail: <u>riyasudheen2040@gmail.com</u>

PROGRAMME SPECIFIC OUTCOMES (PSO)

Upon completion of BSc Mathematics programme, the students will be able to:

- **PSO 01** Understand the basic concepts, fundamental principles and theories in Mathematics and internalize their relevance in everyday life.
- **PSO 02** Demonstrate and apply fundamental knowledge in Mathematical Sciences and their application in research and industry.
- **PSO 03** Acquire good knowledge and understanding to solve specific theoretical and applied problems in Set Theory, Number Theory, Linear and Abstract Algebra, Calculus, Geometry.
- **PSO 04** Analyze and solve real world problems applying mathematical models
- **PSO 05** Develop a positive attitude towards mathematics as an interesting and valuable subject of study.
- **PSO 06** Enhancing students' overall development and to equip them with mathematical modeling abilities, problem solving skills, creative talent and power of communication necessary for various kinds of employment.

SCHEME OF THE PROGRAMME

Internal External Total Credit Semester Course Mark Mark Mark Common course: English 4 20 80 100 Common course: English 3 15 60 75 Common course: Additional 4 20 80 100 Language Core Course I: Basic Logic and 4 20 80 100 Calculus-1 п Complementary course: 3 15 60 75 **Introductory Statistics** Complementary course: Physics (Properties of Matter 2 15 60 75 and Thermodynamics) Audit Course -I Environment _ _ _ _ Studies 525 Total 20 Common course: English 4 20 80 100 Common course: English 3 15 60 75 Common course: Additional 4 20 80 100 Language II Core Course II: Calculus-2 4 20 80 100 Complementary course: 3 60 75 15 Statistics (Probability Theory) Complementary course: Physics (Optics, Laser, 2 75 15 60 Electronics and

Credit and Mark Distribution in Each Semester

Total Credits: 140

	Communication)				
	Audit Course -II Disaster Management	_	-	-	_
	Total	20			525
	Common course: English	4	20	80	100
	Common course: Additional Language	4	20	80	100
	Core Course III: Theory of Equations and Number Theory	4	20	80	100
Ш	Complementary course: Statistics (Probability Distributions and Sampling Theory)	3	15	60	75
	Complementary course: Physics (Mechanics, Relativity, Waves and Oscillations)	plementary course: cs (Mechanics, Relativity, 2 15		60	75
	Audit Course -III Human Rights/Intellectual Property Rights/ Consumer Protection	-	-	-	-
	Total	17			450
	Common course: English	4	20	80	100
	Common course: Additional Language	4	20	80	100
	Core Course IV: Linear Algebra	4	20	80	100
IV	Complementary course: Statistics (Statistical Inference and Quality Control)	3	15	60	75
	Complementary course: Physics (Electricity, Magnetism and Nuclear Physics)	2	15	60	75
	Complementary course: Physics Practical	4	20	80	100
-					

	Total	21			550
	Core Course V: Abstract Algebra	4	20	80	100
	Core Course VI: Basic Analysis	4	20	80	100
	Core Course VII: Numerical Analysis	3	15	60	75
V	Core Course VIII: Linear Programming	3	15	60	75
	Core Course IX: Calculus of Multi Variable-1	3	15	60	75
	Open course: (Offered by Other Departments)	3	15	60	75
	Total	20			500
	Core Course X: Real Analysis	5	20	80	100
	Core Course XI: Complex Analysis	5	20	80	100
	Core Course XII: Calculus of Multi variable-2	4	20	80	100
VI	Core Course XIII: Differential Equations	4	20	80	100
	Elective Course I: Mathematical Programming with Python and Latex	2	15	60	75
	Project Work	2	15	60	75
	Total	22			550
English		22			550
Additional Language		16			400
Complementary Course: Statistics		12			300
Compleme	Complementary Course: Physics				400
Core Cours	e: Mathematics	53			1300

Open Course	3		75
Project	2		75
Audit Course	16		-
Extra Credit Activities	4		-
Total	140		3100

Credit Distribution

Connect	Common	Course		Complem Cour	-	0	Duraita a	0	
Semest er	English	Addition al languag	Core Course	Statistics	Physics	Open Course	Projec t	Audit Course	Total
1	4 (A1) + 3 (A2)	4 (A7)	4	3	2			4	24
2	4 (A3) + 3 (A4)	4 (A8)	4	3	2			4	24

3	4 (A5)	4 (A9)	4	3	2			4	21
4	4 (A6)	4 (A10)	4	3	2 + 4			4	25
5			4 + 4 + 3 + 3 + 3			3			20
6			5 + 5 + 4 + 4 + 2				2		22
Total	22	16	53	12	12	3	2	16	136
Extra Credit Activities							4		
	Grand Total = (120 + 16 Audit Courses + 4 Extra Credit Activities)						140		

Core Course Structure

Total Credits: 58 (Internal: 20%; External: 80%)

Semester	Code No	Course Title	Hrs/ Week	Total Hrs	Credit	Marks
I	BMT1B01	Core Course I: Basic Logic and Calculus-1	4	64	4	100
П	BMT2B02	Core Course II: Calculus-2	4	55	4	100
Ш	BMT3B03	Core Course III: Theory of Equations and Number Theory	5	65	4	100
IV	BMT4B04	Core Course IV: Linear Algebra	5	65	4	100
	BMT5B05	Core Course V: Abstract Algebra	5	65	4	100
	BMT5B06	Core Course VI: Basic Analysis	5	83	4	100
	BMT5B07	Core Course VII: Numerical Analysis	4	64	3	75
V	BMT5B08	Core Course VIII: Linear Programming	3	49	3	75
	BMT5B09	Core Course IX: Calculus of Multi Variable-1	4	64	3	75
	-	Core Course : Project Work	1		-	_

		Open Course (Offered by other Departments)		39	3	
	BMT6B10	Core Course X: Real Analysis	5	80	5	100
	BMT6B11	Core Course XI: Complex Analysis	5	80	Б	100
	BMT6B12	Core Course XII: Calculus of Multi Variable-2	5	80	4	100
	BMT6B13	T6B13 Core Course XIII: Differential Equations		80	4	100
VI	BMT6E01	Core Course XV: elective - Graph Theory				
	BMT6E02	Core Course XIV: elective II - Topology of Metric spaces				
	BMT6E03	Core Course: elective III - Mathematical Programming with Python and Latex	3	48	2	75
	BMT6E04	Core Course: elective IV - Introduction to Geometry				
	BMT6P01	Core Course : Project Work	2		2	75
Total					58	1375

ELECTIVE COURSE STRUCTURE

Semester	Code No	Course Title	Hrs/ Week	Total Hrs	Marks
	BMT6E01	Elective Course I: Graph Theory			
	BMT6E02	Elective Course II: Topology of Metric spaces	3	48	75
VI	BMT6E03	Elective Course III: Mathematical Programming with Python and Latex			
	BMT6E04	Elective Course IV: Introduction to Geometry			

Total Credits: 3 (Internal 20%; External 80%)

OPEN COURSE STRUCTURE

(for students other than B.Sc. Mathematics) Total Credits: 3 (Internal 20%; External 80%)

Semester	Code No	Course Title	Hrs/ Week	Total Hrs	Marks
	BMT5D01	Open Course 1: Applied Calculus			
v	BMT5D02	Open Course 2: Discrete Mathematics for Basic and Applied Sciences	3	48	75
, v	BMT5D03	Open Course 3: Linear Mathematical Models			
	BMT5D04	Open Course 4: Mathematics for Decision Making			

COMPLEMENTARY COURSE STRUCTURE

Total Credits: 12 (Internal: 20%; External: 80%)

Semester	Code No	Course Title	Hrs/ Week	Total Hrs	Credit	Marks
	BMT1C01		4	50	2	75
	BMT1C01(CS)	Mathematics-1	4	52	3	75
	BMT2C02			50		
II	BMT2C02(CS)	Mathematics-2	4	52	3	75
	BMT3C03		_	50	2	75
III	BMT3C03(CS)	Mathematics-3	5	52	3	75
IV	BMT4C04			72	3	75
	BMT4C04(CS)	Mathematics-4	5			

EVALUATION AND GRADING

The evaluation scheme for each course shall contain two parts: internal evaluation and external evaluation.

Internal Evaluation

20% of the total marks in each course are for internal evaluation. The colleges shall send only the marks obtained for internal examination to the university.

Components of Internal Evaluation

P • · · • ·			
SI	Components	Marks (For Courses	Marks (For Courses
No		with Max. Marks 75)	with Max. Marks 100)
1	Class Room Participation (Attendance)	3	4
2	Assignment	3	4
3	Seminar	3	4
4	Test paper	6	8
	Total	15	20

a) Percentage of Class Room Participation (Attendance) in a Semester and Eligible Internal Marks

% of Class Room Participation (Attendance)	Out of 3 (Maximum internal marks is 15)	Out of 4 (Maximum internal marks is 20)
50% ≤ CRP < 75%	1	1
75% ≤ CRP < 85%	2	2
85% and above	3	4

CRP means % of class room participation (Attendance)

b) Percentage of Marks in a Test Paper and Eligible Marks

Range of Marks in test paper (TP)	Out of 6 (Maximum in- ternal marks is 15)	Out of 8 (Maximum in- ternal marks is 20)
Less than 35%	1	1
35%≤ <i>TP</i> <45%	2	2
45% <i>≤TP</i> <55%	3	3
55%≤ <i>TP</i> <65%	4	4
65% <i>≤TP</i> <85%	5	6
85%≤ <i>TP</i> ≤100%	6	8

Evaluation of Project

- 1. Evaluation of the Project Report shall be done under Mark System.
- 2. The evaluation of the project will be done at two stages:
 - Internal Assessment (supervising teachers will assess the project and award internal Marks)
 - External evaluation (external examiner)

3. Grade for the project will be awarded to candidates, combining the internal and external marks.

4. The internal to external components is to be taken in the ratio 1: 4.

Assessment of different components may be taken as below.

Internal assessment of Project (15 Marks)

(Supervising Teacher will assess the Project and award internal Marks)

SI.No.	Components	Internal Marks
1	Originality	3
2	Methodology	3
3	Scheme / Organization of Report	4.5
4	Viva Voce	4.5
	Total	15

External Evaluation of Project (60 Marks) (To be done by the External Examiner)			
SI. No.	Components	External Marks	
1	Relevance of the Topic, Statement of	10	
1	Objectives	12	
	Reference/ Bibliography, Presentation,		
2	quality of Analysis/ Use of Statistical	12	
	Tools.		
3	Findings and recommendations	18	
4	Viva-Voce	18	
i	Total	60	

Industrial Visit / Institutional Visit

The second or third year B.Sc Mathematics students shall be taken under the supervision of faculty members to visit industrial units, organizations or institutions involved in higher education, so as to enable them to have a deep understanding in specialized areas, and to explore various opportunities available at these institutions. The tour report should be submitted to the Head of the Department soon after the tour.

CORE COURSE SYLLABUS

SEMESTER 1

COURSE CODE: BMT1B01 CORE COURSE I: BASIC LOGIC & CALCULUS-1					
Marks					
Credit Hours/week Internal External Total					
4	4	20	80	100	

Course Outcomes	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	Reformulate statements from common language to formal logic and apply truth tables and rules of propositions.	Analyze	PSO1 PSO4
CO2	<i>Formulate</i> short proofs of mathematical statements.	Create	PSO2 PSO3
СОЗ	Determine the continuity and differentiability of a function at a point and on a set.	Evaluate	PSO3 PSO4
CO4	Understand graphing functions using qualitative methods.	Understand	PSO1 PSO3
CO5	<i>Learn</i> definite integral as the limit of sums and integration as derivatives.	Understand	PSO1 PSO2 PSO3

TEXT-1	Discrete Mathematics with Applications: Thomas Koshy, Elsevier			
	Academic Press (2004) ISBN:0-12-421180-1			
TEXT-2	Calculus: Soo T Tan Brooks/Cole, Cengage Learning (2010) ISBN: 978-0-534- 46579-7			

	COURSE CONTEN	іт	
Module 1.	. Logic	Text -1	14 Hours
1.1.	Propositions- definition, Boolean Boolean expression, Disjunction (inc Converse, Inverse and Contra p Precedence, Tautology Contradiction omitted]	clusive and exclusive), Negation ositive, Biconditional stateme	n, Implication ent, Order c
1.2.	Logical equivalences- laws of logic & 'Fuzzy decisions' omitted]	['Equivalent Switching Network	s' 'Fuzzy logio
1.3.	Quantifiers- universal & existential, predicate logic.		
1.4.	Arguments- valid and invalid arguments, inference rules.		
1.5.	Proof Methods – vacuous proof, trivi contrapositive & contradiction, proof non-constructive, counterexample.		
Module 2	. Limit, Continuity and Derivatives	Text-2	18 Hours
1.1.	Intuitive introduction to Limits- A Re One-Sided Limits, Using Graphing	·	ion of a Lim
1.2.	Techniques for finding Limits- Com of Polynomial and Rational Func Squeeze Theorem.		
12	Process Definition of a limit $c = \delta$	definition A Coopertria Interne	otation Com

1.3. Precise Definition of a Limit- ε - δ definition, A Geometric Interpretation, Some illustrative examples.

- 1.4. Continuous Functions- Continuity at a Number, Continuity at an Endpoint, Continuity on an Interval, Continuity of Composite Functions, Intermediate Value Theorem.
- 2.1. Differentiation definition only.

2.9. Differentials and Linear Approximations- increments, Differentials Error Estimates, Linear Approximations, Error in Approximating Δy by dy.

	3. Applications of the Derivative	e Text-2	17 Hours
3.1:	Extrema of Functions - Abso Functions, Fermat's Theorem, Function on a Closed Interval, A	Finding the Extreme	Values of a Continuous
3.2:	The Mean Value Theorem- Ro Consequences of the Mean Val Function.		
3.3:	Increasing and Decreasing F function from sign of derivativ derivative test.		0
3.4:	Concavity and Inflection points- Test, The Roles of <i>f</i> and <i>f</i> in dete	•	
3.5:	Limits involving Infinity; Asymp Infinity, Horizontal Asymptotes, I		, ,
3.6:	Curve Sketching-The Graph Asymptotes, Finding Relative Ex		-
		o 1 o	-
3.7:	Optimization Problems – guide Optimization Problems- applica	Ŭ	

integration formulas and rules of integration, Differential Equations, Initial Value

Problems.

- 4.3. Area- An Intuitive Look, The Area Problem, Defining the Area of the Region Under the Graph of a Function-technique of approximation ['Sigma Notation' and 'Summation Formulas' Omitted] An Intuitive Look at Area (Continued), Defining the Area of the Region Under the Graph of a Function-precise definition, Area and Distance.
- 4.4. The Definite Integral- Definition of the Definite Integral, Geometric Interpretation of the Definite Integral, The Definite Integral and Displacement, Properties of the Definite Integral, More General Definition of the Definite Integral.
- 4.5. The Fundamental Theorem of Calculus- How Are Differentiation and Integration Related? The Mean Value Theorem for Definite Integrals, The Fundamental Theorem of Calculus: Part I, inverse relationship between differentiation and integration, Fundamental Theorem of Calculus: Part 2, Evaluating Definite Integrals Using Substitution, Definite Integrals of Odd and Even Functions, The Definite Integral as a Measure of Net Change.

MODE OF TRANSACTION

Active Learning: Active learning is an approach that emphasizes student-centred learning. This method encourages students to participate in the learning process actively. Teachers can use a variety of techniques such as group work, discussions, and problembased learning to facilitate active learning.

Visual Aids: Mathematics is a subject that involves a lot of abstract concepts and symbols. Visual aids such as diagrams, graphs, charts, and videos can help students understand and remember mathematical concepts.

Real-Life Applications: Students often struggle with understanding the relevance of mathematical concepts. By using real-life examples and applications, teachers can make the subject more engaging and meaningful to students.

Cooperative Learning: Cooperative learning involves students working together in small groups to solve problems or complete tasks. This method helps students develop teamwork and communication skills, while also reinforcing their understanding of mathematical concepts.

Technology: Technology can be a powerful tool in teaching mathematics. Tools such as interactive whiteboards, graphing calculators, and educational software can help students visualize and understand mathematical concepts better.

Differentiated Instruction: Students have different learning styles, abilities, and interests. Teachers can differentiate instruction by providing different learning materials and activities that cater to the individual needs of each student.

MODE OF ASSESSMENT						
Internal Assessm	ent (20 Marks)					
a. Internal Te	st – One internal t	est:	8 Mark			
b. Assignmer	nts:		4 Mark			
c. Seminar P	resentation:		3 Mark			
d. Classroom	n participation bas	ed on attendance:	3 Mark			
External Assessm	nent (80 Marks)	Duration $2\frac{1}{2}$ Hours,	No of Questions: 27			
	PATT	ERN OF QUESTION P	PAPER			
Pattern	PatternTotal No. ofNo. ofMarks for eachCeiling ofquestionsquestions to bequestionMarksansweredAnsweredAnsweredAnswered					
Short answer	15	15	2	25		
Paragraph	8	8	5	35		
Essay	4	2	10	20		
			Total	80		

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module 1. Logic	18	
Module 2. Limit Continuity and Derivatives	22	

Module 3. Applications of the Derivative	22
Module 4. Integration	18

*List of Practicals (using any software)	
Plotting graph of functions.	

- Evaluating limits by plotting its graphs.
- Plotting the graphs of polynomials of degrees 4 and 5, the derivative graph, and the second derivative graph and comparing them.
- Finding relative and absolute extrema by plotting its graphs.
- Finding the area under a curve and verifying the definite integral of a positive function and the area under its graph is the same.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

- 1. Kenneth H. Rosen: Discrete Mathematics and Its Applications(7/e) *McGraw-Hill, NY(2007)*
- 2. Joel Hass, Christopher Heil & Maurice D. Weir : Thomas' Calculus(14/e) *Pearson (2018) ISBN* 0134438981
- 3. Robert A Adams & Christopher Essex : Calculus Single Variable (8/e) Pearson Education Canada (2013) ISBN: 0321877403
- 4. Jon Rogawski & Colin Adams : Calculus Early Transcendentals (3/e) W. H. Freeman and Company(2015) ISBN: 1319116450
- 5. Anton, Bivens & Davis : Calculus Early Transcendentals (11/e) John Wiley & Sons, Inc.(2016) ISBN: 1118883764

SEMESTER 2

COURSE CODE: BMT2B02 CORE COURSE II: CALCULUS-2					
Marks					
Credit	Hours/week	Internal	External	Total	
4	4	20	80	100	

Course Outcomes

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	Solve problems in a range of mathematical applications using integration.	Apply	PSO2 PSO3
CO2	<i>Learn</i> the key concepts of transcendental function including logarithmic, exponential, inverse trigonometric and hyperbolic functions.	Understand	PSO1 PSO2 PSO3
СОЗ	Understand the concepts to evaluate the limits of indeterminate forms and the convergence of improper integrals.	Understand	PSO1 PSO2 PSO3
CO4	Understand the concepts of sequences and series and determine limits of sequences and convergence of series.	Understand	PSO1 PSO2 PSO3
CO5	Define , differentiate and integrate functions represented as power series expansions.	Analyze	PSO1 PSO3 PSO4

TEXT	Calculus: Soo T Tan Brooks/Cole, Cengage Learning (2010) ISBN: 978-0-534-
	46579-7

COURSE CONTENT	
Module 1. Applications of Definite Integral	12 Hours

- 5.1 Areas between Curves- A Real Life Interpretation, The Area Between Two Curves, Integrating with Respect to *y* adapting to the shape of the region, What Happens When the Curves Intertwine?
- 5.2 Volume Solids of revolution, Volume by Disk Method, Region revolved about the x-axis, Region revolved about the y-axis, Volume by the Method of Cross Sections ['Washer Method' omitted].
- 5.4 Arc Length and Areas of surfaces of revolution- Definition of Arc Length, Length of a Smooth Curve, arc length formula, The Arc Length Function, arc length differentials, Surfaces of Revolution, surface area as surface of revolution.

Module 2. The Transcendental Functions	21 Hours

- 6.1 The Natural logarithmic function- *definition*, The Derivative of *ln x*, Laws of Logarithms, The Graph of the Natural Logarithmic Function, The Derivatives of Logarithmic Functions, Logarithmic Differentiation, Integration Involving Logarithmic Functions.
- 6.3 Exponential Functions- The number *e*, Defining the Natural Exponential Function, *properties*, The Laws of Exponents, The Derivatives of Exponential Functions, Integration of the Natural Exponential Function.
- 6.4 General Exponential and Logarithmic Functions Exponential Functions with Base *a*, *laws of exponents*, The Derivatives of a^x and a^u , Graphs of $y = a^x$, integrating a^x , Logarithmic Functions with Base *a*, *change of base formula*, The Power Rule (General Form), The Derivatives of Logarithmic Functions with Base *a*, The Definition of the Number *e* as a Limit ['Compound Interest' omitted]
- 6.5 Inverse trigonometric functions- *definition, graph, inverse properties,* Derivatives of inverse trigonometric functions, Integration involving Inverse Trigonometric Functions.
- 6.6 Hyperbolic functions- The Graphs of the Hyperbolic Functions, Hyperbolic

Identities, Derivatives and Integrals of Hyperbolic Functions, Inverse Hyperbolic Functions, *representation in terms of logarithmic function*, Derivatives of Inverse Hyperbolic Functions, An Application.

6.7 Indeterminate forms and L'H 'opital rule- *motivation,* The Indeterminate Forms. The Indeterminate Forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$. The Indeterminate Forms $\infty - \infty$ and $0.\infty$. The Indeterminate Forms $0^0, \infty^0$ and 1^∞ .

Module 3. Infinite Sequences and Series	11 Hours
---	----------

- 6.7 Improper integrals *definition*, Infinite Intervals of Integration, Improper Integrals with Infinite Discontinuities, A Comparison Test for Improper Integrals.
- 6.7 Sequences- definition, recursive definition, Limit of a Sequence, limit laws, squeeze theorem, Bounded Monotonic Sequences, definition, monotone convergence theorem (only statement; its proof omitted).
- 6.7 Series- *defining the sum, convergence and divergence,* Geometric Series, The Harmonic Series, The Divergence Test, Properties of Convergent Series
- 6.7 The Integral Test investigation of convergence, integral test, The *p* Series, *its convergence and divergence*
- 6.7 The Comparison Test- *test series*, The Comparison Test, The Limit Comparison Test

Module	4. Power Series and Taylor Series	11 Hours
6.7	Alternating Series- <i>definition, the alternating series test, its p</i> Approximating the Sum of an Alternating Series by Sn.	roof, examples,
6.7	Absolute Convergence- <i>definition, conditionally convergent,</i> The Root Test, Summary of Tests for Convergence and Diverge Rearrangement of Series	-
6.7	Power Series- <i>definition</i> , Interval of Convergence, <i>radius of</i> Differentiation and Integration of Power Series	convergence,

6.7 Taylor and Maclaurin Series- *definition, Taylor and Maclaurin series of functions,* Techniques for Finding Taylor Series

MODE OF TRANSACTION

Active Learning: Active learning is an approach that emphasizes student-centred learning. This method encourages students to participate in the learning process actively. Teachers can use a variety of techniques such as group work, discussions, and problembased learning to facilitate active learning.

Visual Aids: Mathematics is a subject that involves a lot of abstract concepts and symbols. Visual aids such as diagrams, graphs, charts, and videos can help students understand and remember mathematical concepts.

Real-Life Applications: Students often struggle with understanding the relevance of mathematical concepts. By using real-life examples and applications, teachers can make the subject more engaging and meaningful to students.

Cooperative Learning: Cooperative learning involves students working together in small groups to solve problems or complete tasks. This method helps students develop teamwork and communication skills, while also reinforcing their understanding of mathematical concepts.

Technology: Technology can be a powerful tool in teaching mathematics. Tools such as interactive whiteboards, graphing calculators, and educational software can help students visualize and understand mathematical concepts better.

Differentiated Instruction: Students have different learning styles, abilities, and interests. Teachers can differentiate instruction by providing different learning materials and activities that cater to the individual needs of each student.

MODE OF ASSESSMENT				
Internal Assessment (20 Marks)				
a. Internal Test – One internal test:	8 Mark			
b. Assignments:	4 Mark			

c. Seminar Presentation:

4 Mark

d. Classroom participation based on attendance: 4 Mark

External Assessment (80 Marks) Duration: $2\frac{1}{2}$ Hours, No of Questions: 27

PATTERN OF QUESTION PAPER

Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	15	15	2	25
Paragraph	8	8	5	35
Essay	4	2	10	20
	1		Total	80

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module1: Applications of Definite Integral	15	
Module 2: The Transcendental Functions	26	
Module 3: Infinite Sequences and Series	25	
Module 4: Power Series and Taylor Series	14	

*List of Practicals (using any software)

- Obtaining surface of revolution of curves.
- Plotting of graphs of function
- e^{ax+b} , log(ax + b), 1/(ax + b), sin(ax + b), cos(ax + b), |ax + b| and to illustrate the effect of *a* and *b* on the graph.
- Plotting of graphs of inverse trigonometric and hyperbolic functions.
- Plotting of recursive sequences.
- Study the convergence of sequences through plotting.

- Calculate the sum 1 + 1/2 + 1/3 + 1/4 + ... + 1/n.
- Study the convergence/divergence of infinite series by plotting their sequences of the partial sum.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

- Joel Hass, Christopher Heil & Maurice D. Weir : Thomas' Calculus (14/e) Pearson(2018) ISBN 0134438981
- Robert A Adams & Christopher Essex : Calculus Single Variable (8/e) Pearson Education Canada (2013) ISBN: 0321877403
- Jon Rogawski & Colin Adams : Calculus Early Transcendentals (3/e) W. H. Freeman and Company(2015) ISBN: 1319116450
- Anton, Bivens & Davis : Calculus Early Transcendentals (11/e) John Wiley & Sons, Inc.(2016) ISBN: 1118883764
- 5. James Stewart : Calculus (8/e) Brooks/Cole Cengage Learning(2016) ISBN: 978-1-285-74062-1
- Jerrold Marsden & Alan Weinstein : Calculus I and II (2/e) Springer
 Verlag NY(1985) ISBN 0-387-90974-5 : ISBN 0-387-90975-3

SEMESTER 3

COURSE CODE: BMT3B03 CORE COURSE III: THEORY OF EQUATIONS AND NUMBER THEORY				
Credit	Hours/week	Marks		
Credit	HOUIS/ WEEK	Internal	External	Total
4	5	20	80	100

Course Outcomes	Expected Course Outcome Learni Upon completion of this course, students will be Doma able to; Doma		PSO No
СОІ	<i>Explain</i> the notion of synthetic division of polynomials.	Understand	PSO1
CO2	<i>Identify</i> the limits of roots of an <i>n</i> th degree polynomial.	Remember	PSO1 PSO5
CO3	Solve polynomial equations.	Apply	PSO1 PSO5
CO4	Analyze the sign of a polynomial for small and large values of variable.	Analyze	PSO5
CO5	Determine results involving divisibility, greatest common divisor, least common multiple and a few applications	Evaluate	PSO3
CO6	Analyze the theory of congruences and solve linear congruent equations	Analyze	PSO3
C07	Solve Linear Diophantine Equations.	Apply	PSO1 PSO3 PS06
CO8	Solve congruences using Fermat's Theorem,	Apply	PSO3

	Wilson's Theorem and Euler's Theorem.		
	Differentiate the concepts of number theoretic		
CO9	functions- Euler's phi function, tau and sigma	Analyze	PSO3
	function		

Text:l	Theory of Equations : J V Uspensky McGraw Hill Book Company, Inc. (1948) ISBN:07-066735-7
Text:2	Elementary Number Theory with Applications (2/e): Thomas Koshy, Elsever Academic Press(2007) ISBN:978-0-12-372487-8

COURSE CONTENT				
Module 1.	Theory of Equations	Text:1	20 Hours	
II.3	Division of polynomials, quotient and remainder, r	method of deta	ched	
	coefficients			
II.4.	The remainder theorem			
II.5.	Synthetic Division			
III.1.	Algebraic equations, roots, maximum number of	roots		
III.2.	Identity theorem			
III.3.	III.3. The Fundamental theorem of Algebra (statement only), factorization to linear			
	factors, multiplicity of roots			
III.4.	Imaginary roots of equations with real coefficients			
III.5.	Relations between roots and coefficients Chapter IV			
IV.1.	V.1. Limits of roots			
IV.2.	Method to find upper limit of positive roots			
IV.3	Limit for moduli of roots [only the method to find	out upper limit f	from the	
	auxiliary equation is required; derivation omitted]			
IV.4.	Integral roots			
IV.5.	Rational roots			
V.1	What is the solution of an equation, algebraic solu	ition or solution	by radical	
V.2.	2. Carden's formula			
V.3.	Discussion of solution			

- V.4. Irreducible case
- VI.1. Object of the Chapter
- VI.2. The sign of a polynomial for small and large values of variables- locating roots of polynomial between two numbers having values of opposite sign-geometric illustration only-[rigorous reasoning in the starred section omitted]
- VI.4. Corollaries- roots of odd and even degree polynomial, number of roots in an interval counted according to their multiplicity
- VI.5 Examples
- VI.6. An important identity and lemma [derivation not needed]
- VI.7 Rolle's theorem [proof omitted], use in separating roots
- VI.10 Descarte's rule of signs-only statement and illustrations are required.

lodule 2	2. Division Algorithm	Text:2	15 Hours
1.3.	Mathematical induction- well ordering principle version of principle of mathematical induction, i induction (second principle of MI), illustration		
1.4.	Recursion- recursive definition of a function, illu	strations.	
2.1.	The division algorithm – statement and proof, div dealing, ['The two queens puzzle' omitted], pigeon algorithm, divisibility relation, illustration, divisibili intersection and complement-inclusion-exclusion even and odd integers.	nhole principle an ty properties, unio	d division n
2.5.	Prime and Composite Numbers- definitions, infi 2.4' 'The sieve of Eratosthenes omitted], a number number theorem (statement only), distribution o Example 2.25). [rest of the section omitted]	er theoretic function	on, prime
3.1.	Greatest Common Divisor- gcd, symbolic definit Duncan's identity, Polya's theorem, infinitude of linear combination, gcd as linear combination, o gcd of n positive integers, a linear combination relatively prime integers, alternate proof for infin	orimes, properties an alternate defini of n positive intege	of gcd, tion of gcd,

odule 3.	Congruences	Text:2	18 Hours	
3.2.	The Euclidean Algorithm- The Euclidean algorit puzzle' omitted], Lame's theorem (statement o	• •	, 0	
3.3.	The Fundamental Theorem of Arithmetic- Eucli			
	product by a prime, fundamental theorem of c			
	Decomposition, number of trailing zeros, highe		-	
	[only statement of Theorem3.14 required; proof Primes Revisited, Dirichlet's Theorem(statemen		oution of	
3.4.	Least Common Multiple- definition, canonical or relationship between gcd and Icm, relatively p	•		
	relationship between ged and left, relatively p			
3.5. Linear Diophantine Equations- Linear Diophantine Equations				
	(upto example 3.19 & example 3.20 onwards on	nitted)		
4.1.	Congruences - congruence modulo m, properties of congruence,			
	characterization of congruence, least residue, ['Friday-the-Thirteenth'			
	omitted], congruence classes, A Complete Set			
	properties of congruence, use of congruence t			
	division, ['Modular Exponentiation' method omi			
	Modulo m, further properties of congruence an	• •		
	remainder ['Monkey and Cocunut Puzzle revisit congruences of two numbers with different mo		/) omitted]	
4.2.	Linear Congruence- solvability, uniqueness of	solution, incong	ruent	
	solutions, Modular Inverses, applications			
5.1.	Divisibility Tests-Divisibility Test for 10, Divisibilit	y Test for 5, Divis	ibility Test for	
	2^i , Divisibility Tests for 3 and 9, Divisibility Test f	or 11 [rest of the	section from	
	Theorem 5.1 onwards omitted]			
odule 4.	Applications of Congruences	Text:2	12 Hours	
7.1.	Wilson's Theorem- self invertible modulo prime	e. Wilson's theor	em and its	
	converse ['Factorial, Multifactorial and Primoric	a Primes' omitte	ui	

- 7.2. Fermat's Little Theorem (FLT)- FLT and its applications, [Lagrange's alternate proof of Wilson's theorem omitted], inverse of a modulo p using FLT, application-solution of linear congruences ['Factors of $2^{n} + 1$ 'omitted], extension of FLT in various directions ['The Pollard p-1 factoring method' omitted] Pseudoprimes- FLT to check compositeness, disproving converse of FLT, 7.3. pseudoprimes, infinitude of pseudoprime. ['Carmichael Numbers' omitted] 7.4. Euler's Theorem- motivation, Euler's Phi Function φ , Euler's Theorem, applications, generalization of Euler's theorem (koshy) 8.1. Euler's Phi Function Revisited- multiplicative functions, fundamental theorem for multiplicative functions, formula for $\varphi(pe)$, [Example 8.3 omitted] multiplicative nature of φ , use in computation, Gauss theorem on sum of $\varphi(d)$ values of divisors *d* of *n*.
 - 8.2. The Tau and Sigma Function- definition, multiplicative nature of tau(τ) and sigma (σ) functions, formula for $\tau(n)$ and $\sigma(n)$. ['Application to a Brainteaser' omitted]

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MODE OF ASSESSMENT					
Intern	al Assessm	ent (20 Marks)			
a.	Attendanc	e:	8 Mark		
b.	Seminar/V	/iva:	4 Mark		
C.	Assignme	nt:	4 Mark		
d.	Internal Te	est:	4 Mark		
Extern	al Assessn	nent (80 Marks)	Duration $2\frac{1}{2}$ Hours,	No of Questions: 27	
PATTERN OF QUESTION PAPER					
PatternTotal No. ofNo. ofMarks for eachCeiling ofauestionsauestions to beauestionMarks					

	questions	questions to be answered	question	Marks
Short answer	15	15	2	25
Paragraph	8	8	5	35
Essay	4	2	10	20
			Total	80

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module 1: Theory of equations	33	
Module 2: Division Algorithm	21	
Module 3: Congruences	28	
Module 4: Applications of Congruences	28	

*List of Practicals (using any software)

- Finding roots of quadratic polynomial.
- Writing programming code to find the gcd of two numbers using Euclidean

algorithm.

- Writing programming code to find the Icm of two numbers.
- Finding highest power of a prime dividing *n*!.
- Performing divisibility test.
- Checking compositeness of numbers using Fermat's Little Theorem.
- Finding Euler's phi function value of a number.
- Checking solvability of linear congruence.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

- 1. Dickson L.E: Elementary Theory of Equations John Wiley and Sons, Inc. NY(1914)
- 2. Turnbull H.W: Theory of Equations(4/e) Oliver and Boyd Ltd. Edinburg (1947)
- 3. Todhunter I: An Elementary Treatise on the Theory of Equations(3/e) Macmillan and Co. London (1875)
- 4. William Snow Burnside and Arthur William Panton: The Theory of Equations with An Introduction to Binary Algebraic Forms Dublin University Press Series (1881)
- David M. Burton: Elementary Number Theory(7/e) McGraw-Hill (2011) ISBN: 978-0-07-338314 9
- 6. Gareth A. Jones and J. Mary Jones: Elementary Number Theory, Springer Undergraduate Mathematics Series (1998) ISBN: 978-3-540-76197-6
- 7. Underwood Dudley: Elementary Number Theory(2/e), Dover Publications (2008) ISBN:978-0-486-46931-7
- 8. James K Strayer: Elementary Number Theory, Waveland Press, inc. (1994), ISBN:978-1-57766-224-2
- 9. Kenneth H. Rosen: Elementary Number Theory(6/e), Pearson Education (2018) ISBN: 9780134310053.

SEMESTER 4

COURSE CODE – BMT4B04 CORE COURSE IV: LINEAR ALGEBRA					
Cradit	Hourobuook	Marks			
Credit	Hours/week			Total	
4	5	20	80	100	

Course Outcomes

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No.
соі	Use computational techniques and algebraic skills essential for the study of systems of linear equations and matrix algebra.	Apply	PSO1
CO2	Compute and use determinants Apply		PSO1 PSO5
СОЗ	Identify vector spaces and subspaces.	Analyze	PSO1 PSO5
CO4	Recognize the concept of the terms span, linear independence, basis and dimension and apply these concepts to various vector spaces and subspaces	Remember	PSO5
CO5	Analyze vectors in \mathbb{R}^n geometrically and algebraically	Analyze	PSO3
CO6	Determine the relationship among the solutions of a given system of linear equations and some important subspaces associated with the coefficient matrix of the system	Evaluate	PSO3

	Explain the notion of a linear transformation		PSO1
C07	and its matrix.	Apply	PSO3
			PS06
	Find the eigen values and eigen vectors of a		
CO8	square matrix using the characteristic	E colorada	D 000
	polynomial and determine whether a matrix is	Evaluate	PSO3
	diagonalizable		

Text	Elementary Linear Algebra: Application Version(11/e): Howard Anton & Chris
	Rorres Wiley (2014) ISBN 978-1-118-43441-3

	COURSE CONTENT		
Module 1	17 Hours		
1.1.	1.1. Introduction to Systems of Linear Equations- linear equation in variables, linear system of equations in variables, solution, Linear Systems in Two and Three Unknowns, solution by geometric analysis, consistent and inconsistent systems linear system with no, one, and infinite number of solutions, augmented matrix and elementary row operations.		
1.2:	Gaussian elimination - Considerations in Solving Linear Systems, Echelon Forms, reduced row echelon form, Elimination Methods, Gauss–Jordan elimination, Gaussian elimination, Homogeneous Linear Systems, Free Variables, Free Variable Theorem for Homogeneous Systems, Gaussian Elimination and Back- Substitution, Some Facts about Echelon Forms.		
1.3:	1.3: Matrices and Matrix operations- Matrix Notation and Terminology, row vector column vector , square matrix of order <i>n</i> , Operations on Matrices , Partitione Matrices, Matrix Multiplication by Columns and by Rows, Matrix Products of Linear Combinations, linear combination of column vectors, Column-Ro Expansion, Matrix Form of a Linear System, Transpose of a Matrix, Trace of Matrix.		
1.4:	Inverses and algebraic properties of matrices- Properties of Matri Scalar Multiplication, Properties of Matrix Multiplication, Zero Properties, Identity Matrices, Inverse of a Matrix, Properties of Inv	Matrices and	

of a Linear System by Matrix Inversion, Powers of a Matrix, Matrix Polynomials, Properties of the Transpose.

- 1.5: Elementary matrices and a method for finding A⁻¹-row equivalence, elementary matrix, Row Operations by Matrix Multiplication, invertibility of elementary matrices, invertibility and equivalent statements, A Method for Inverting Matrices, Inversion Algorithm, illustrations.
- 1.6: More on linear systems and invertible matrices Number of Solutions of a Linear System, Solving Linear Systems by Matrix Inversion, Linear Systems with a Common Coefficient Matrix, Properties of Invertible Matrices, equivalent statements for unique solution of Ax = b, determining consistency.
- 1.7: Diagonal, Triangular and Symmetric Matrices-Diagonal Matrices, Inverses and Powers of Diagonal Matrices, Triangular Matrices. Properties of Triangular Matrices, Symmetric Matrices, algebraic properties of symmetric matrices, Invertibility of Symmetric Matrices.
- 1.8: Matrix transformation- definition, Properties of Matrix Transformations, standard matrix, A Procedure for Finding Standard Matrices.

Module 2. General Vector Space

14 Hours

- Determinants by cofactor expansion- minors, cofactors, cofactor expansion,
 Definition of a General Determinant, A Useful Technique for Evaluating 2 × 2 and 3 × 3 Determinants.
- 2.2 Evaluating determinants by row reduction- a few basic theorems, elementary row operations and determinant, determinant of elementary matrices, determinant by row reduction.
- 4.1 Real vector space Vector Space Axioms, examples, Some Properties of Vectors.
- 4.2 Subspaces- definition, criteria for a subset to be a subspace, examples,
 Building Subspaces, linear combination, spanning, Solution Spaces of
 Homogeneous Systems as subspace, The Linear Transformation Viewpoint,
 kernel, different set of vectors spanning the subspace.
- 4.3 Linear Independence- Linear Independence and Dependence, illustrations, A Geometric Interpretation of Linear Independence, Wronskian, linear

independence using Wronskian.

lule 3.	Change of Basis, Rank, Nullity	20 Hours
4.4.	Coordinates and basis-Coordinate Systems in Linear Algebra, E	Basis for a
	Vector Space, finite and infinite dimensional vector spaces, illus	strations,
	Coordinates Relative to a Basis, Uniqueness of Basis Represente	ation.
4.5.	Dimension- Number of Vectors in a Basis, dimension, Some Fur	ndamental
	Theorems, dimension of subspaces.	
4.6.	Change of basis -Coordinate Maps, Change of Basis, Transition	Matrices,
	Invertibility of Transition Matrices, An Efficient Method for Comp	uting
	Transition Matrices for \mathbb{R}^n , Transition to the Standard Basis for $\mathbb R$	\mathbb{R}^n .
4.7.	Row space, Column space and Null space- vector spaces asso	ciated with
	matrices, consistency of linear system, Bases for Row Spaces, C	olumn
	Spaces, and Null Spaces, basis from row echelon form, Basis for	the Columr
	Space of a Matrix, row equivalent matrices and relationship bet	ween basis
	for column space, Bases Formed from Row and Column Vectors	s of a Matrix
4.8.	Rank Nullity and Fundamental matrix spaces- equality of dime	nsions of rov
	and column spaces, Rank and Nullity, Dimension Theorem for M	
	Fundamental Spaces of a Matrix, rank of a matrix and its transp	ose, A
	Geometric Link Between the Fundamental Spaces, orthogonal c	•
	invertibility and equivalent statements, Applications of Rank, Ov	rdetermine
	and Underdetermined Systems.	
dule 4.	Eigen values and Eigen Vectors	14 Hours
4.9	Basic matrix transformations in R ² and R ³ -Reflection Operators	s, Projection
	Operators, Rotation Operators, Rotations in \mathbb{R}^3 , Dilations and Co	ntractions,
	Expansions and Compressions, Shears.	
4.10	Properties of matrix transformation- Compositions of Matrix Tro	ansformatio
	One-to-One Matrix Transformations, Kernel and Range, fundam	nental
	relationship between invertibility of a matrix and its matrix trans	formation,
	Inverse of a One-to-One Matrix Operator.	
5.1	Eigen values and Eigen Vectors- definition. Computina Eigenva	lues and
5.1	Eigen values and Eigen Vectors- definition, Computing Eigenva Eigenvectors, characteristic equation, alternative ways of descr	
5.1	Eigenvectors, characteristic equation, alternative ways of descr	ibing eigen
5.1		ibing eigen

eigen vectors and diagonalizability, Procedure for Diagonalizing a Matrix, Eigenvalues of Powers of a Matrix, Computing Powers of a Matrix, Geometric and Algebraic Multiplicity.

7.1 Orthogonal Matrices- definition, characterization of orthogonal matrices, properties of orthogonal matrices [rest of the section omitted].

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MODE OF ASSESSMENT				
Internal Assessment (20 Marks)				
a.	Internal test	8 Mark		
b.	Assignment	4 Mark		
C.	Seminar/ Viva	4 Mark		
d.	Attendance	4 Mark		
External Assessment (80 Marks): Duration: $2\frac{1}{2}$ Hours, <i>No. of Questions: 27</i>				

MODULE WISE MARK DISTRIBUTION	Marks
Module 1. Systems of Linear Equations & Matrices	11
Module 2. General Vector space	26
Module 3. Change of Basis, Rank, Nullity	18

Module 4. Eigen values and Eigen Vectors	26
Total	80

*List of Practicals (using any software)

- Matrix operation (addition, multiplication, inverse, transpose).
- Reorganizing systems of linear equations into matrix form and solve.
- Calculating the eigen values and eigen vectors of a matrix.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

- 1. Jim DeFranza, Daniel Gagliardi: Introduction to Linear Algebra with Applications Waveland Press, Inc(2015)ISBN: 1-4786-2777-8
- 2. Otto Bretscher: Linear Algebra with Applications(5/e) Pearson Education, Inc (2013) ISBN: 0-321-79697-7
- 3. Ron Larson, Edwards, David C Falvo : Elementary Linear Algebra(6/e) Houghton Mifflin Harcourt Publishing Company(2009) ISBN: 0-618-78376-8
- 4. David C. Lay, Steven R. Lay, Judi J. McDonald: Linear Algebra and its Application (5/e) *Pearson Education, Inc(2016) ISBN: 0-321-98238-X*
- 5. Martin Anthony, Michele Harvey: Linear Algebra: Concepts and Methods Cambridge University Press(2012) ISBN: 978-0-521-27948-2
- 6. Jeffrey Holt: Linear Algebra with Applications W. H. Freeman and Company (2013) ISBN: 0-7167-8667-2

SEMESTER 5

COURSE CODE – BMT5B05 CORE COURSE V: ABSTRACT ALGEBRA				
Credit	Hours/week	Marks		
		Internal	External	Total
4	5	20	80	100

Course Outcomes

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	Understand the concept of binary operations by definition and examples.	Understand	PSO1, PSO2
CO2	Understand the concept of algebraic structures.	Understand	PSO1, PSO2
CO3	<i>Learn</i> different types of subgroups such as groups, rings, integral domains, fields and fields of quotient of integral domain.	Remember	PSO1, PSO3
CO4	The students will actively participate in the transition of important concepts such homomorphisms & isomorphisms from discrete mathematics to advanced abstract mathematics.	Analyse	PSO5, PSO6

TEXT	JOHN B. FRALEIGH, A FIRST COURSE IN ABSTRACT ALGEBRA (7th Edn.), Pearson
	Education Inc., 2003.

COURSE CONTENT		
Module 1. Binary Operations and Groups	20 Hours	
Binary Operations; Isomorphic binary structures; Groups; Subgroups (Sections 2, 3, 4 & 5)		
Module 2. Cyclic groups and Alternating Groups	25 Hours	
Cyclic groups; Groups and permutations; Orbits, Cycles and Alternating Groups (Sections 6, 8 & 9)		
Module 3. Cosets and Homomorphisms	5 Hours	
Cosets and Theorem of Lagrange; Homomorphisms (Sections 10 & 13)		
Module 4. Rings and Fields	15 Hours	
Rings and Fields; Integral Domains, The Field of Quotients of an Integral Do 18, 19 & 21)	omain (Sections	

Lecture method

Problem solving method

Questioning method.

MODE OF ASSESSMENT

Intern	Internal Assessment (20 Marks)		
a.	Classroom participation:	4 Mark	
b.	Test papers I:	8 Mark	
C.	Assignment:	4 Mark	
d.	Seminar:	4 Mark	
		Duration 2 ¹ Hours No of Quastions: 27	
External Assessment (80 Marks)		Duration $2\frac{1}{2}$ Hours, No of Questions: 27	

PATTERN OF QUESTION PAPER

Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	15	15	2	25
Paragraph	8	8	5	35
Essay	4	2	10	20
	1	1	Total	80

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module 1: Binary Operations and Groups	30	
Module 2: Cyclic groups and Alternating Groups	20	
Module 3: Cosets and Homomorphisms	16	
Module 4: Rings and Fields	14	

- 1. Joseph A. Gallian: Contemporary Abstract Algebra(9/e) Cengage Learning, Boston(2017) ISBN: 978-1-305-65796-0
- 2. John B Fraleigh: A First Course in Abstract Algebra(7/e) Pearson Education LPE(2003) ISBN 978-81-7758-900-9

- 3. David Steven Dummit, Richard M. Foote: Abstract Algebra(3/e) Wiley, (2004) ISBN: 8126532289
- 4. Linda Gilbert and Jimmie Gilbert: Elements of Modern Algebra (8/e) Cengage Learning, Stamford(2015) ISBN: 1-285-46323-4
- 5. John R. Durbin: Modern Algebra: An Introduction(6/e) Wiley(2015) ISBN: 1118117611
- 6. Jeffrey Bergen: A Concrete Approach to Abstract Algebra- From the integers to Insolvability of Quintic Academic Pres [Elsever](2010)ISBN: 978-0-12-374941-3

COURSE CODE - BMT5 B06 CORE COURSE VI: BASIC ANALYSIS				
Credit	Hours/week		Marks	
orodit		Internal	External	Total
4	80	20	80	100

	Expected Course Outcome	Learning	
CO No.	Upon completion of this course, students will be	Domain	PSO No
	able to;	Domain	
	Learn and deduce rigorously many properties of		
COI	the real number system by assuming a few	Understand	PSO1
	fundamental facts about it as axioms.		
	Learn about sequences, their limits, several basic		
CO2	and important theorems involving sequences	Understand	PSO1
	and their applications.		
	Recognize bounded, convergent, divergent,		
	Cauchy and monotonic sequences and calculate	Analyze	5000
CO3	their limit superior, limit inferior, and the limit of a		PSO3
	bounded sequence.		
	Understand some basic topological properties of		
CO4	real numbers and complex number systems,	Understand	PSO1
04	such as the concept of open and closed sets,	onderstand	F301
	their properties, their characterization and so on		
	Represent complex numbers algebraically and		
CO5	geometrically and learn complex functions as	Understand	PSO1
	mappings.		

Text: 1	Introduction to Real Analysis(4/e) : Robert G Bartle, Donald R Sherbert John Wiley & Sons(2011) ISBN 978-0-471-43331-6.
Text: 2	Complex Analysis A First Course with Applications: Dennis Zill & Patric Shanahan Jones and Bartlett Learning(2015) ISBN:0-7637-1437-2.

COURSE CONTENT				
Module 1.	The Real Numbers	20 Hours		
1.3.	Finite and Infinite Sets-definition, countable sets, denumerabil	ity of Q, union		
	of countable sets, cantor's theorem.			
2.1.	The Algebraic and Order Properties of ${\mathbb R} extsf{-}$ algebraic properties	s, basic results,		
	rational and irrational numbers, irrationality of $\sqrt{2}$, Ord	der properties,		
	arithmetic-geometric inequality, Bernoulli's Inequality.			
2.2.	Absolute Value and the Real Line- definition, basic re	esults, Triangle		
	Inequality, The real line, ε -neighborhood.			
2.3.	The Completeness Property of ${\mathbb R} extsf{-}$ Suprema and Infima, alterna	ate		
	formulations for the supremum, The Completeness Property.			
Module 2.	Sequences of Real Numbers	21 Hours		
2.4.	Applications of the Supremum Property- The Archimedean Pr	operty, various		
	consequences, Existence of $\sqrt{2}$, Density of Rational Numbers ir	ר \mathbb{R} , The Density		
	Theorem, density of irrationals.			
2.5:	Intervals-definition, Characterization of Intervals, Nested In	tervals, Nested		
	Intervals Property, The Uncountability of ${\mathbb R},$ [binary, decima	I and periodic		
	representations omitted] Cantor's Second Proof.			
3.1.	Sequences and Their Limits- definitions, convergent	and divergent		
	sequences, Tails of Sequences, Examples.			
3.2:	Limit Theorems- sum, difference, product and quotients of se	quences,		

Squeeze Theorem, ratio test for convergence.

3.3: Monotone Sequences-definition, monotone convergence theorem, divergence of harmonic series, calculation of square root, Euler's number.

Module 3. Open and Closed sets in $\ensuremath{\mathbb{R}}$

21 Hours

- 3.4. Subsequences and the Bolzano-Weierstrass Theorem- definition, limit of subsequences, divergence criteria using subsequence, The Existence of Monotone Subsequences, monotone subsequence theorem, The Bolzano-Weierstrass Theorem, Limit Superior and Limit Inferior.
- 3.5. The Cauchy Criterion- Cauchy sequence, Cauchy Convergence Criterion, applications, contractive sequence.
- 3.6. Properly divergent sequences-definition, examples, properly divergent monotone sequences, "comparison theorem", "limit comparison theorem"
- 11.1. Open and Closed sets in R neighbourhood, open sets, closed sets, open set properties, closed set properties, Characterization of Closed Sets, cluster point, Characterization of Open Sets, The Cantor Set, properties.

Module 4. Complex Numbers

21 Hours

- 1.1. Complex numbers and their properties- definition, arithmetic operations, conjugate, inverses, reciprocal
- 1.2. Complex Plane- vector representation, modulus, properties, triangle Inequality.
- 1.3. Polar form of complex numbers- polar representation, principal argument, multiplication and division, argument of product and quotient, integer powers, de Moivre's formula.
- 1.4. Powers and roots- roots, principal *nth* root.

- 1.5. Sets of points in the complex plane- circles, disks and neighbourhoods, open sets, annulus, domains, regions, bounded sets.
- 2.1. Complex Functions- definition, real and imaginary parts of complex function, complex exponential function, exponential form of a complex number, Polar Coordinates.
- 2.2. Complex Functions as mappings- complex mapping, illustrations, Parametric curves in complex planes, common parametric curves, image of parametric curves under complex mapping [The subsection 'Use of Computers' omitted].
- 2.4. Special Power functions- The power function Z^n , The power function $Z^{\frac{1}{n}}$, principal square root function, Inverse Functions, multiple valued functions.

Active Learning: Active learning is an approach that emphasizes student-centred learning. This method encourages students to participate in the learning process actively. Teachers can use a variety of techniques such as group work, discussions, and problembased learning to facilitate active learning.

Visual Aids: Mathematics is a subject that involves a lot of abstract concepts and symbols. Visual aids such as diagrams, graphs, charts, and videos can help students understand and remember mathematical concepts.

Real-Life Applications: Students often struggle with understanding the relevance of mathematical concepts. By using real-life examples and applications, teachers can make the subject more engaging and meaningful to students.

Cooperative Learning: Cooperative learning involves students working together in small groups to solve problems or complete tasks. This method helps students develop teamwork and communication skills, while also reinforcing their understanding of

mathematical concepts.

Technology: Technology can be a powerful tool in teaching mathematics. Tools such as interactive whiteboards, graphing calculators, and educational software can help students visualize and understand mathematical concepts better.

Differentiated Instruction: Students have different learning styles, abilities, and interests. Teachers can differentiate instruction by providing different learning materials and activities that cater to the individual needs of each student.

MODE OF ASSESSMENT					
Internal Ass	essment (20 Marks)				
a. Interi	nal test:	8 Mark			
b. Assig	inments:	4 Mark			
c. Class	s room Participation	4 Mark			
d. Semi	nar Presentation:	4 Mark			
External Ass	sessment (80 Marks)	Duration $2\frac{1}{2}$ Hours,	No of Questions: 27		
	PAT	TTERN OF QUESTION F	PAPER		
Pattern	1	No. of questions to be	APER Marks for each question	Ceiling of Marks	
	Total No. of questions	No. of questions to be answered	Marks for each question	Marks	
Short answe	Total No. of questions er 15	No. of questions to be answered 15	Marks for each question 2	Marks	
Short answe Paragraph	Total No. of questions er 15 8	No. of questions to be answered 15 8	Marks for each question 2 5	Marks 25 35	
Short answe	Total No. of questions er 15	No. of questions to be answered 15	Marks for each question 2	Marks	

MODULE WISE MARK DISTRIBUTION			
Module	Mark		
Module I: The Real Numbers	20		
Module II: Sequences of Real Numbers	21		
Module III: Open and Closed sets in ${\mathbb R}$	18		
Module IV: Complex Numbers	21		

*List of Practicals (using any software)

- Plotting of recursive sequences.
- Study the convergence of sequences through plotting.
- Verify Bolzano-Weierstrass theorem through the plotting of sequences and hence identify convergent subsequences from the plot.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

- 1. Charles G. Denlinger: Elements of Real Analysis Jones and Bartlett Publishers Sudbury, Massachusetts (2011) ISBN:0-7637-7947-4 [Indian edition: ISBN- 9380853157]
- 2. David Alexander Brannan: A First Course in Mathematical AnalysisCambridge University Press,US(2006) ISBN: 9780521684248
- 3. John M. Howie: Real Analysis Springer Science & Business Media(2012) [Springer Undergraduate Mathematics Series] ISBN: 1447103416
- 4. James S. Howland: Basic Real Analysis Jones and Bartlett Publishers Sudbury, Massachusetts (2010) ISBN:0-7637-7318-2
- 5. James Ward Brown, Ruel Vance Churchill: Complex variables and applications(8/e) McGraw-Hill Higher Education, (2009) ISBN: 0073051942
- 6. Alan Jeffrey: Complex Analysis and Applications(2/e) Chapman and Hall/CRC Taylor Francis Group(2006)ISBN:978-1-58488-553-5
- 7. Saminathan Ponnusamy, Herb Silverman: Complex Variables with Applications *Birkhauser Boston*(2006) *ISBN*:0-8176-4457-4

- Terence Tao: Analysis I & II (3/e) TRIM 37 & 38 Springer Science+Business Media Singapore 2016; Hindustan book agency(2015) ISBN 978-981-10-1789-6 (eBook) & ISBN 978-981-10-1804-6 (eBook)
- 9. Ajith Kumar & S Kumaresan : A Basic Course in Real Analysis CRC Press, Taylor & Francis Group(2014) ISBN: 978-1-4822-1638-7 (eBook - PDF)
- Hugo D Junghenn : A Course in Real Analysis CRC Press, Taylor & Francis Group(2015) ISBN:
 978-1-4822-1928-9 (eBook PDF)

COURSE CODE – BMT5B07 CORE COURSE VII: NUMERICAL ANALYSIS					
Que dit	Hoursbucck	Marks			
Credit	Hours/week	Internal	External	Total	
3 4 15 60 75					

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	<i>Illustrate</i> several methods such as bisection method, fixed point iteration method, regula falsi method etc. to find out the approximate numerical solutions of algebraic and transcendental equations with desired accuracy	Analyze	PSO4
CO2	Explain the concept of interpolation and also learn some well-known interpolation techniques.	Understand	PSO4
СОЗ	Develop a few techniques for numerical differentiation and integration and also realize their merits and demerits.	Create	PSO4
CO4	<i>Find out</i> numerical approximations to solutions of initial value problems and also to understand the efficiency of various methods.	Apply	PSO4

TEXT	Numerical Analysis (10/e): Richard L. Burden, J Douglas Faires, Annett M. Burden	
	Brooks Cole Cengage Learning (2016) ISBN:978-1-305-25366-7	

COURSE CONTENT

Module 1. Solutions of Equations in One Variable & Interpolation and Polynomial Approximation

28 Hours

Note: Students should be familiar with concepts and definitions such as 'round off error', rate of convergence etc. discussed in sections 1.2 and 1.3

- 2.1. The Bisection Method
- 2.2. Fixed-Point Iteration
- 2.3. Newton's Method and Its Extensions- Newton's Method (Newton-Raphson method), Convergence using Newton's Method, The Secant Method, The Method of False Position
- 2.4. Error Analysis for Iterative Methods- Order of Convergence, linear and quadratic convergence, Multiple Roots, Modified Newton's method for faster convergence.
- 3.1. Interpolation and the Lagrange Polynomial- motivation, Lagrange Interpolating Polynomials, error bound
- 3.3. Divided Differences- kth divided difference, Newton's divided difference formula, Forward Differences, Newton Forward-Difference Formula, Backward Differences, Newton Backward–Difference Formula, Centered Differences, Stirling's formula.

[Algorithms are omitted]

Module 2. Numerical Differentiation and Integration

18 Hours

4.1. Numerical Differentiation- approximation of first derivative by forward difference formula, backward difference formula, Three-Point Formulas, Three-Point Endpoint Formula, Three-Point Midpoint Formula [Five-Point Formulas, Five-Point Endpoint Formula, Five-Point Midpoint Formula omitted]
Second Derivative Midpoint Formula to approximate second derivative,

Round-Off Error Instability.

- 4.3. Elements of Numerical Integration-numerical quadrature, The Trapezoidal Rule, Simpson's Rule, Measuring Precision, Closed Newton-Cotes Formulas, Simpson's Three-Eighths rule, Open Newton-Cotes Formulas
- 4.4. Composite Numerical Integration-composite Simpson's rule, composite trapezoidal rule, composite midpoint rule, round off error stability

[Algorithms are omitted]

Module 3. Initial-Value Problems for Ordinary Differential Equations Introduction 18 Hours

- 5.1. The Elementary Theory of Initial-Value Problems.
- 5.2. Euler's Method- derivation using Taylor formula, Error bounds for Euler Method.
- 5.3. Higher-Order Taylor Methods- local truncation error, Taylor method of order n and order of local truncation error.
- 5.4: Runge-Kutta Methods- only Mid-Point Method, Modified Euler's Method and Runge-Kutta Method of Order Four are required. [derivation of formula omitted in each case].
 [Algorithms are omitted]

MODE OF TRANSACTION

Lecture Method

Problem Solving Method

Questioning Method

	MODE OF ASSESSMENT				
Intern	Internal Assessment (15 Marks)				
a.	Classroom participation:	3 Mark			
b.	Test papers I:	6 Mark			
C.	Assignment:	3 Mark			
d.	Seminar/ Viva:	3 Mark			
Extern	al Assessment (60 Marks)	Duration 2 Hours, No of Questions: 21			

PATTERN OF QUESTION PAPER				
Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	12	12	2	20
Paragraph	7	7	5	30
Essay	2	1	10	10
	1		Total	60

MODULE WISE MARK DISTRIBUTION			
Module	Mark		
Module1: Solutions of Equations in One Variable & Interpolation and	28		
Polynomial Approximation			
Module 2: Numerical Differentiation and Integration	16		
Module 3: Initial-Value Problems for Ordinary Differential Equations	16		
Introduction			

*List o	*List of Practicals (using any software)		
•	Bisection Method.		
•	Newton Raphson Method.		
•	Fixed-Point Iteration		
•	Secant Method.		

- Regulai Falsi Method.
- Interpolating discrete data to continues data for data interpretation.
- Lagrange interpolation.
- Approximating definite integral by using Simpson's rule and Trapezoidal rule.
- Solving ODE by using Euler's and Runge-Kutta methods.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

- 1.Kendall E. Atkinson, Weimin Han: Elementary Numerical Analysis (3/e) John Wiley & Sons (2004) ISBN:0-471-43337-3[Indian Edition by Wiley India ISBN: 978-81-265-0802-0]
- James F. Epperson: An Introduction to Numerical Methods and Analysis(2/e) John Wiley & Sons (2013) ISBN: 978-1-118-36759-9

3.Timothy Sauer: Numerical Analysis(2/e) Pearson (2012) ISBN: 0-321-78367-0

4.S S Sastri: Introductory Methods of Numerical Analysis(5/e) PHI Learning Pvt. Ltd.(2012) ISBN:978-81-203-4592-8

5. Ward Cheney, David Kincaid: Numerical Mathematics and Computing (6/e) Thomson Brooks/Cole (2008) ISBN: 495-11475-8

CORE COURSE VIII: LINEAR PROGRAMMING Marks				
Credits	Hours/week	Internal	External	Total
3	3	15	60	75

Course Outcomes

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	<i>Design</i> real life situations as linear programming models.	Create	PSO2 PSO4 PSO5 PSO6
CO2	Solve linear programming problems using graphical method, simplex method and dual simplex method.	Apply	PSO1 PSO4
CO3	<i>Develop</i> and solve transportation and assignment problems using mathematical algorithms.	Create	PSO2 PSO4 PS05 PSO6

Text	Linear Programming and Its Applications: James K. Strayer Under graduate		
	Texts in Mathematics Springer (1989) ISBN: 978-1-4612-6982-3		

COURSE CONTENT

Module 1. Geometric Linear Programming and The Simplex Algorithm

15 Hours

Geometric Linear Programming: Profit Maximization and Cost Minimization, typical motivating examples, mathematical formulation, Canonical Forms for Linear Programming Problems, objective functions, constraint set, feasible solution, optimal solution, Polyhedral Convex Sets, convex set, extreme point, theorems asserting existence of optimal solutions, The Two Examples Revisited, graphical solutions to the problems, A Geometric Method for Linear Programming, the difficulty in the method, Concluding Remarks.

The Simplex Algorithm:- Canonical Slack Forms for Linear Programming Problems; Tucker Tableaus, slack variables, Tucker tableaus, independent variables or nonbasic variables, dependent variables or basic variables, .An Example: Profit Maximization, method of solving a typical canonical maximization problem, The Pivot Transformation, The Pivot Transformation for Maximum and Minimum Tableaus, An Example: Cost Minimization, method of solving a typical canonical minimization problem, The Simplex Algorithm for Maximum Basic Feasible Tableaus, The Simplex Algorithm for Maximum Tableaus, Negative Transposition; The Simplex Algorithm for Minimum Tableaus, Cycling, Simplex Algorithm Anti cycling Rules, Concluding Remarks.

Module 2. Noncanonical Linear Programming Problems and Duality 14 Hours Theory

Noncanonical Linear Programming Problems: - Unconstrained Variables, Equations of Constraint, Concluding Remarks.

Duality Theory: - Duality in Canonical Tableaus, The Dual Simplex Algorithm, The Dual Simplex Algorithm for Minimum Tableaus, The Dual Simplex Algorithm for Maximum Tableaus, Matrix Formulation of Canonical Tableaus, The Duality Equation, Duality in Noncanonical Tableaus, Concluding Remarks.

Module 3. Transportation Problems and Assignment Problems	10 Hours
Transportation Problems: - The Balanced Transportation Probl	em, The Vogel
Advanced-Start Method (VAM), The Transportation Algorithm, Ar	nother Example,
Unbalanced Transportation Problems.	
Assignment Problems: - The Assignment Problem, The Hungc	irian Algorithm,
Concluding Remarks, The Minimum-Entry Method, The Northwest-C	orner Method.

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

	MODE OF ASSESSMENT			
Intern	al Assessment (15 Marks	\$)		
a.	Internal test:	3 Mark		
b.	Attendance:	6 Mark		
C.	Assignment:	3 Mark		
d.	Seminar/ Viva:	3 Mark		

External Assessment (60 Marks) Duration 2 Hours, No of Questions: 21

PATTERN OF QUESTION PAPER

Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	12	12	2	20
Paragraph	7	7	5	30
Essay	2	1	10	10
	1		Total	60

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module 1: Noncanonical Linear Programming Problems and Duality Theory	18	
Module 2: Noncanonical Linear Programming Problems and Duality Theory	26	
Module 3: Transportation Problems and Assignment Problems	16	

*List of Practicals (using any software)

- Solving linear programming problems.
- Solving transportation models.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

APPLICATIONS:

** The application part is beyond the part of the syllabus. Questions should not be asked from this part.

SOFTWARE: TORA

TORA Package is a computer application software package used for statistical computation and analysis. It is an already written program or suite of programs written for statistical application. It is basically applied for Operations Research (OR) analysis. TORA Optimization Window is a graphical user interface (GUI). This is what makes it unique from other statistical packages that have spreadsheets windows. TORA software offers modules for matrix inversion, solution of simultaneous linear equations, linear programming, transportation models, network models, project planning with CPM and PERT, queuing analysis, and game theory.

- Robert J. Vanderbei: Linear Programming: Foundations and Extensions (2/e) Springer Science+ Business Media LLC (2001) ISBN: 978-1-4757-5664-7
- 2. Frederick S Hiller, Gerald J Lieberman: Introduction to Operation Research(10/e) McGraw-Hill Education, 2 Penn Plaza, New York(2015)ISBN: 978-0-07-352345-3
- 3. Paul R. Thie, G. E. Keough : An Introduction to Linear Programming and Game Theory(3/e) John Wiley and Sons,Ins. (2008) ISBN: 978-0-470-23286-6
- 4. Louis Brickman: Mathematical Introduction to Linear Programming and Game Theory UTM, Springer Verlag, NY(1989)ISBN:0-387-96931-4
- 5. Jiri Matoušek, Bernd Gartner: Understanding and Using Linear Programming Universitext, Springer-Verlag Berlin Heidelberg (2007) ISBN: 978-3-540-30697-9

COURSE CODE – BMT5B09 CORE COURSE IX: Calculus of Multi Variable-1				
Gradit		Marks		
Credit	Hours/week	Internal	External	Total
3	4	15	60	75

Course Outcomes

CO No.	Expected Course Outcome CO No. Upon completion of this course, students will be able to;		PSO No
CO1	Explain the calculus of parametric equations	Understand	PSO3
CO2	Understand differentiation and integration of vector valued functions	Understand	PSO1
СОЗ	Understand multivariable functions and their representations.	Understand	PSO3
CO4	Understand the idea of limit and continuity for functions of several variables.	Understand	PSO3
CO5	Apply the notion of partial derivatives to evaluate directional derivatives.	Apply	PSO2
CO6	Compute the length and area of surface of revolution of smooth curves.	Apply	PSO4
C07	Graph the polar equations	Apply	PSO4
C08	Determine the equations of a line, plane and surface in space.	Evaluate	PSO2

Text	Calculus: Soo T Tan Brooks/Cole, Cengage Learning (2010) ISBN: 978-0-
	534-46579-7

	COURSE CONTENT		
Module 1.	Calculus of Parametric and Polar Equations of a Plane Curve	17 Hours	
10.2.	Plane Curves and Parametric Equations- Why We Use Para Sketching Curves Defined by Parametric Equations.	metric Equations,	
10.3.	10.3. The Calculus of parametric equations- Tangent Lines to Curves Defined by Parametric Equations, Horizontal and Vertical Tangents, Finding from Parametric Equations, The Length of a Smooth Curve, The Area of a Surface of Revolution.		
10.4.	Polar coordinate-The Polar Coordinate System, Relationship E and Rectangular Coordinates, Graphs of Polar Equations, Sym Lines to Graphs of Polar Equations.		
10.5.	Areas and Arc Lengths in polar coordinates-Areas in Polar Co bounded by polar curves, Area Bounded by Two Graphs, Arc L Coordinates, Area of a Surface of Revolution, Points of Intersec Polar Coordinates.	ength in Polar	
Module 2.	Surfaces in Space	12 Hours	
11.5.	Lines and Planes in Space-Equations of Lines in Space, pare symmetric equation of a line, Equations of Planes in Space, st Parallel and Orthogonal Planes, The Angle Between Two Plan Between a Point and a Plane	andard equation,	
11.6	Surfaces in Space- Traces, Cylinders, Quadric Surfaces, Ellipso Hyperboloids of One Sheet, Hyperboloids of Two Sheets, Cone Hyperbolic Paraboloids		
11.7.	Cylindrical and Spherical Coordinates-The Cylindrical Coord converting cylindrical to rectangular and vice versa, The Sphe System, converting spherical to rectangular and vice versa.	,	
Module 3.	Calculus of Vector Valued functions and Space Curves	15 Hours	
12.1.	Vector Valued functions and Space Curves- definition of vect Curves Defined by Vector Functions, ['Example 7' omitted] Lim Continuity.	-	
12.2.	Differentiation and Integration of Vector-Valued Function- The Vector Function, Higher-Order Derivatives, Rules of Differentia of Vector Functions.		

- 12.3. Arc length and Curvature- Arc Length of a space curve, Smooth Curves, Arc Length Parameter, arc length function, Curvature, formula for finding curvature, Radius of Curvature. Velocity and Acceleration- Velocity, Acceleration, and Speed; Motion of a 12.4. Projectile. 12.5. Tangential and Normal Components of Acceleration- The Unit Normal, principal unit normal vector, Tangential and Normal Components of Acceleration [The subsections 'Kepler's Laws of Planetary Motion', and 'Derivation of Kepler's First Law' omitted] Module 4. Calculus of Functions of two variables 20 Hours 13.1. Functions of two or more variables- Functions of Two Variables, Graphs of Functions of Two Variables, Level Curves, Functions of Three Variables and Level Surfaces. 13.2. Limits and continuity-An Intuitive Definition of a Limit, existence and nonexistence of limit, Continuity of a Function of Two Variables, Continuity on a Set, continuity of polynomial and rational functions, continuity of composite functions, Functions of Three or More Variables, The Definition of a Limit. Partial Derivatives- Partial Derivatives of Functions of Two Variables, geometric 13.3. interpretation, Computing Partial Derivatives, Implicit Differentiation, Partial Derivatives of Functions of More Than Two Variables, Higher-Order Derivatives, clairaut theorem, harmonic functions. 13.4. Differentials- Increments, The Total Differential, interpretation, Error in Approximating by [only statement of theorem1 required; proof omitted] Differentiability of a Function of Two Variables, criteria, Differentiability and Continuity, Functions of Three or More Variables. 13.5. The Chain rule- The Chain Rule for Functions Involving One Independent Variable, The Chain Rule for Functions Involving Two Independent Variables, The General Chain Rule, Implicit Differentiation
 - 13.6. Directional Derivatives and Gradient vectors The Directional Derivative, The Gradient of a Function of Two Variables, Properties of the Gradient, Functions of Three Variables.

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MODE OF ASSESSMENT			
Internal Assessment (15 Marks)			
a.	Classroom participation:	3 Mark	
b.	Test papers I:	6 Mark	
C.	Assignment:	3 Mark	
d.	Seminar:	3 Mark	

External Assessment (60 Marks) Duration 2 Hours, No of Questions: 21

PATTERN OF QUESTION PAPER

Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	12	12	2	20
Paragraph	7	7	5	30
Essay	2	1	10	10
	1		Total	60

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module I: Calculus of Parametric and Polar Equations of a Plane Curve	26	
Module II: Surfaces in Space	16	
Module III: Calculus of Vector Valued functions and Space Curves	21	
Module IV: Calculus of Functions of two variables	16	

*List of Practicals (using any software)

- Plotting area bounded by two graphs.
- Sketching parametric curves.
- Tracing of conics in Cartesian coordinates/ polar coordinates.
- Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic, paraboloid, hyperbolic paraboloid using cartesian coordinates.
- Evaluating limits by plotting of graphs of multi variable functions.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

- 1. Joel Hass, Christopher Heil & amp; Maurice D. Weir : Thomas' Calculus (14/e) Pearson(2018) ISBN 0134438981
- 2. Robert A Adams & amp; Christopher Essex : Calculus Single Variable (8/e) Pearson Education Canada (2013) ISBN: 0321877403
- 3. Jon Rogawski & amp; Colin Adams: Calculus Early Transcendentals (3/e) W.H. Freeman and Company (2015) ISBN: 1319116450
- 4. Anton, Bivens & amp; Davis : Calculus Early Transcendentals (11/e) John Wiley& Sons, Inc.(2016) ISBN: 1118883764
- 5. James Stewart : Calculus (8/e) Brooks/Cole Cengage Learning(2016) ISBN: 978-1-285-74062-1
- 6. Jerrold Marsden & Alan Weinstein : Calculus I and II (2/e) Springer Verlag NY(1985) ISBN 0-387-90974-5 : ISBN 0-387-90975-3

SEMESTER 6

COURSE CODE – BMT6 B10 CORE COURSE X: REAL ANALYSIS				
a	Lieuwe hure etc		Marks	
Credits Hours/week		Internal	External	Total
4	80	20	80	100

Course Outcomes

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	Learn and deduce rigorously many properties of the real number system by assuming a few fundamental facts about it as axioms. Learn the definition of continuous functions, apply sequential criteria for continuity, and understand several deep and fundamental results of continuous functions on intervals.	Understand	PSO1
CO2	Realize the difference between continuity and uniform continuity and the equivalence of these ideas for functions on closed and bounded intervals their applications.	Analyse	PSO1
CO3	Develop the notion of Riemann integrability of a function using the idea of tagged partitions and calculate the integral value of some functions using the definition.	Create	PSO1
CO4	<i>Formulate</i> Cauchy criteria for integrability and a few applications of it. In particular, they learn	Create	PSO1

	to use Cauchy criteria in proving the non-		
	integrability of certain functions.		
CO5	Understand two forms of the fundamental theorem of calculus and their significance in the practical problem of evaluation of an integral.	Apply	PSO2
CO6	Prove convergence and divergence of sequences of functions and series. Understand the difference between point-wise and uniform convergence of sequences and series of functions.	Create	PSO1
C07	Understand the notion of improper integrals, their convergence, principal value and evaluation.	Understand	PSO1
CO8	<i>Learn</i> the properties of and relationship among two important improper integrals, namely beta and gamma functions that frequently appear in mathematics, statistics, science and engineering.	Apply	PSO2

Text: 1	Introduction to Real Analysis(4/e) : Robert G Bartle, Donald R Sherbert John Wiley & Sons(2011) ISBN 978-0-471-43331-6
Text: 2	R.R. Goldberg: Methods of Real Analysis
Text: 3	Narayanan & Manicavachagom Pillay: Calculus, Vol. II

COURSE CONTENT

dule 1.	Continuity	Text: 1	18 Hours
5.1:	Continuous Functions- definition, sequential	criteria for continu	lity,
	discontinuity criteria, examples of continuou	s and discontinuo	us functions,
	Dirichlet and Thomae function.		
5.3:	Continuous Functions on Intervals- Bound	edness Theorem, ⁻	The Maximum-
	Minimum Theorem, Location of Roots Theore	em, Bolzano's Inter	mediate Value
	Theorem, Preservation of Intervals Theorem.		
5.4:	Uniform Continuity- definition, illustration,	, Nonuniform Cor	tinuity Criteria,
	Uniform Continuity Theorem, Lipschitz Fu	unctions, Uniform	Continuity of
	Lipschitz Functions, converse, The Co	ontinuous Extens	ion Theorem,
	Approximation by step functions & piecew	vise linear functio	ns, Weierstrass
	Approximation Theorem (only statement).	1	
Jule 2.	Approximation Theorem (only statement).	Text: 1	22 Hours
dule 2. 7.1:			
	Riemann Integral	Partitions, Riemanr	n sum, Riemann
	Riemann Integral Riemann Integral –Partitions and Tagged F	Partitions, Riemanr	n sum, Riemann
	Riemann Integral Riemann Integral –Partitions and Tagged F integrability, examples, Some Properties	Partitions, Riemanr of the Integral,	n sum, Riemann Boundedness
7.1:	Riemann Integral Riemann Integral –Partitions and Tagged F integrability, examples, Some Properties Theorem. Riemann Integrable Functions-Cauchy Cr	Partitions, Riemanr of the Integral,	s sum, Riemann Boundedness s, The Squeeze
7.1:	Riemann Integral Riemann Integral –Partitions and Tagged F integrability, examples, Some Properties Theorem. Riemann Integrable Functions-Cauchy Cr	Partitions, Riemanr of the Integral, iterion, illustration ble Functions, il	s sum, Riemann Boundedness s, The Squeeze
7.1:	Riemann Integral Riemann Integral –Partitions and Tagged F integrability, examples, Some Properties Theorem. Riemann Integrable Functions-Cauchy Cr Theorem, Classes of Riemann Integral	Partitions, Riemanr of the Integral, iterion, illustration ble Functions, in ditivity Theorem.	sum, Riemann Boundedness s, The Squeeze ntegrability of
7.1: 7.2:	Riemann Integral Riemann Integral –Partitions and Tagged F integrability, examples, Some Properties Theorem. Riemann Integrable Functions-Cauchy Cr Theorem, Classes of Riemann Integra continuous and monotone functions, The Ad	Partitions, Riemann of the Integral, iterion, illustration ble Functions, in ditivity Theorem. ental Theorem (Fi	sum, Riemann Boundedness s, The Squeeze ntegrability of
7.1: 7.2:	Riemann Integral Riemann Integral –Partitions and Tagged F integrability, examples, Some Properties Theorem. Riemann Integrable Functions-Cauchy Cr Theorem, Classes of Riemann Integra continuous and monotone functions, The Ad The Fundamental Theorem-The Fundame	Partitions, Riemann of the Integral, iterion, illustration ble Functions, in ditivity Theorem. ental Theorem (Fi ubstitution Theore	a sum, Riemann Boundedness s, The Squeeze ntegrability of irst Form), The im, Lebesgue's

Module 3.	Sequences and Series of Functions	Text: 1	17 Hours
8.1.	Pointwise and Uniform Convergence-def	finition, illustration	s, The Uniform
	Norm, Cauchy Criterion for Uniform Conver	gence.	
8.2.	Interchange of Limits- examples leading to the idea, Interchange of Limit		
	and Continuity, Interchange of Limit and	d Derivative [only	statement of
	theorem 8.2.3 required; proof omitted] In	terchange of Limi	t and Integral,
	Bounded convergence theorem(stateme	ent only) [8.2.6 I	Dini's theorem
	omitted].		
9.4:	: Series of Functions – (A quick review of series of real numbers of section 3		s of section 3.7
	without proof) definition, sequence of partic	al sum, convergen	ce, absolute
	and uniform convergence, Tests for Uniform	n Convergence, We	eierstrass M-
	Test (only upto and including 9.4.6).		
Module 4.	Improper Riemann Integrals	Text: 2 & 3	23 Hours
	Improper Riemann Integrals		
	Improper Integrals, Improper Integrals of th the second kind, Cauchy Principal value, Im		U
	(Sections 7.9, 7.10 of text 2)		
	Beta and Gamma Functions		
	Beta functions, Gamma Functions, Relation between Beta and Gamma functions.		
	(Chapter IX, Sections 2.1, 2.2, 2.3, 3, 4, 5 of tex	rt 3)	

Active Learning: Active learning is an approach that emphasizes student-centred learning. This method encourages students to participate in the learning process actively. Teachers can use a variety of techniques such as group work, discussions, and problembased learning to facilitate active learning.

Visual Aids: Mathematics is a subject that involves a lot of abstract concepts and symbols. Visual aids such as diagrams, graphs, charts, and videos can help students understand and remember mathematical concepts.

Real-Life Applications: Students often struggle with understanding the relevance of mathematical concepts. By using real-life examples and applications, teachers can make the subject more engaging and meaningful to students.

Cooperative Learning: Cooperative learning involves students working together in small groups to solve problems or complete tasks. This method helps students develop teamwork and communication skills, while also reinforcing their understanding of mathematical concepts.

Technology: Technology can be a powerful tool in teaching mathematics. Tools such as interactive whiteboards, graphing calculators, and educational software can help students visualize and understand mathematical concepts better.

Differentiated Instruction: Students have different learning styles, abilities, and interests. Teachers can differentiate instruction by providing different learning materials and activities that cater to the individual needs of each student.

	MODEO	FASSESSMENT
Internal Asse	ssment (15 Marks)	
a.	Classroom participation:	4 Mark

b. Test papers I:	8 Mark
c. Assignment:	4 Mark
d. Seminar Presentation:	4 Mark

External Assessment (80 Marks) Duration $2\frac{1}{2}$ Hours, No of Questions: 27

PATTERN OF QUESTION PAPER

Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	15	15	2	25
Paragraph	8	8	5	35
Essay	4	2	10	20
	1		Total	80

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module I: Continuity	18	
Module 2: Riemann Integral	22	
Module 3: Sequences and Series of Functions	17	
Module 4: Improper Riemann Integrals	23	

*List of Practicals (using any software)

- Find Riemann Integral by using Riemann sum.
- Plotting of recursive sequences of functions.
- Study the convergence of sequences of functions through plotting.
- Study the convergence/divergence of infinite series of functions by plotting their sequences of partial sum.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES

- 1. Charles G. Denlinger: Elements of Real Analysis Jones and Bartlett Publishers Sudbury, Massachusetts (2011) ISBN:0-7637-7947-4 [Indian edition: ISBN- 9380853157]
- 2. David Alexander Brannan: A First Course in Mathematical Analysis Cambridge University Press,US(2006) ISBN: 9780521684248
- 3. John M. Howie: Real Analysis Springer Science & Business Media (2012) [Springer Undergraduate Mathematics Series] ISBN: 1447103416
- 4. James S. Howland: Basic Real Analysis Jones and Bartlett Publishers Sudbury, Massachusetts (2010) ISBN:0-7637-7318-2
- Terence Tao: Analysis I & II (3/e) TRIM 37 & 38 Springer Science+Business Media Singapore 2016; Hindustan book agency(2015) ISBN 978-981-10-1789-6 (eBook) & ISBN 978-981-10-1804-6 (eBook)
- 6. Richard R Goldberg: Methods of Real Analysis Oxford and IBH Publishing Co.Pvt.Ltd. NewDelhi(1970)
- Saminathan Ponnusamy: Foundations of Mathematical Analysis Birkhauser(2012) ISBN 978-0-8176-8291-0
- 8. William F Trench: Introduction to Real Analysis ISBN 0-13-045786-8
- 9. Ajith Kumar & S Kumaresan : A Basic Course in Real Analysis CRC Press, Taylor & Francis Group(2014) ISBN: 978-1-4822-1638-7 (eBook - PDF)
- Hugo D Junghenn : A Course in Real Analysis CRC Press, Taylor & Francis Group(2015) ISBN:
 978-1-4822-1928-9 (eBook PDF)

COURSE CODE – BMT6 B11 CORE COURSE XI: COMPLEX ANALYSIS					
Credit Hours/week Marks					
orodit		Internal External Total			
5	5	20	80	100	

Course Outcomes

	Expected Course Outcome	Learning		
CO No.	Upon completion of this course, students will be able to;	Domain	PSO No	
COI	Distinguish the concepts of differentiability and analyticity of Complex functions.	Understand	PSO1	
CO2	Understand necessary and sufficient condition for checking analyticity	Understand	PSO1	
CO3	Relate harmonic functions and analytic functions	Analyze	PSO4	
CO4	Analyze elementary complex functions	Analyze	PSO4	
CO5	Understand complex integral, its properties and evaluation	Understand	PSO1	
CO6	Explain a few fundamental results on contour integration theory such as Cauchy's theorem, Cauchy-Goursat theorem and their applications	Understand	PSO1	
C07	Apply Cauchy's integral formula and derive Liouville's theorem, Morera's theorem and power series expansion of an analytic function	Apply	PSO2	
C08	Apply Residue theorem to evaluate contour integrals	Apply	PSO2	

	Complex Analysis A First Course with Applications: Dennis Zill & Patric Shanahan
ТЕХТ	Jones and Bartlett Learning (2015) ISBN:0-7637-1437-2

	COURSE CONTENT				
Module 1.	Analytic Functions, Elementary Functions and Mappings	21 Hours			
2.6.	Limit and Continuity- Limit of a complex function, condition for of limit, real and imaginary parts of limit, properties of a continuity, discontinuity of principal square root function, continuous functions, continuity of polynomial and rational func Functions, Branches, Branch Cuts and Points.	complex limits, properties of			
3.2.	Differentiability and Analyticity – Derivative of a complex Fu differentiation, function that is nowhere differentiable, Analytic f functions, singular points, Analyticity of sum product and quo rule.	unctions, entire			
3.3.	3.3. Cauchy Riemann Equations- Necessary condition for analyticity, Criterion for non-analyticity, sufficient condition for analyticity, sufficient condition for differentiability, Cauchy Riemann equations in polar coordinates.				
3.4.	3.4. Harmonic Functions- definition, analyticity and harmonic nature, harmonic conjugate functions, finding harmonic conjugate.				
4.1.	4.1. Exponential and logarithmic functions-Complex Exponential Function, it derivative, analyticity, modulus argument and conjugate, algebraic properties periodicity, exponential mapping and its properties, Complex Logarithmic Function, logarithmic identities, principal value of a complex logarithm, a inverse function, derivative, logarithmic mapping, properties, other branches.				
4.3.	4.3. Trigonometric and Hyperbolic functions- Complex Trigonometric Functions, identities, periodicity of <i>sine</i> and <i>cosine</i> , Trigonometric equations and their solution, Modulus, zeroes analyticity, [subsection 'Trigonometric Mapping' omitted], Complex Hyperbolic Functions, relation to sine and cosine.				
Module 2.	Integration in the Complex plane	21 Hours			
5.1.	Real Integrals- Definite Integral, simple, smooth, closed curves, the plane, Method of Evaluation-curves defined parametrico given as functions, Orientation of a Curve.	•			

5.2. Complex Integral-contours, definition of complex integral, complex valued

function of a real variable, evaluation of contour integral, properties of contour integral, ML-inequality.

- 5.3. Cauchy-Goursat Theorem- simply and multiply connected regions, Cauchy theorem, Cauchy-Goursat theorem for simply connected domain (without proof), Multiply Connected Domains, principe of deformation of contours, Cauchy-Goursat theorem for multiply connected domains, illustrations.
- 5.4. Independence of Path- definition, analyticity and path independence, antiderivative, Fundamental theorem for contour integrals, Some Conclusions, Existence of anti-derivative.
- 5.5. Cauchy's Integral Formulas & amp; their Consequences- Cauchy's Two Integral Formulas, illustration of their use, Some Consequences of the Integral Formulas- cauchy's inequality, Liouville theorem, Morera's theorem, Maximum modulus theorem.

Module 3. Series 18 Hours 6.1. Sequences and Series- definition, criteria for convergence, Geometric series, necessary condition for convergence, test for divergence, absolute and conditional convergence, Ratio test, root test, Power Series, circle of convergence, radius of convergence, Arithmetic of Power Series. 6.2. Taylor Series- differentiation and integration of power series, term by term differentiation and integration, Taylor Series, Maclaurian series , illustrations.

6.3. Laurent's Series- isolated singularities, Laurent's Theorem [proof omitted], illustrations.

Module 4. Residues

20 Hours

- 6.4. Zeros and Poles- classification of isolated singular points, removable singularity, pole, essential singularity, order of zeros and poles.
- 6.5. Residues and Residue Theorem- residue, method of evaluation of residue at poles, (Cauchy's) Residue Theorem, illustrations.
- 6.6. Some Consequences of Residue theorem-
- 6.6.1. Evaluation of Real Trigonometric Integrals

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MODE OF ASSESSMENT				
Internal As	ssessment (20 Marks)			
a. Cla	ssroom participation:	4 Mark		
b. Tes	t papers:	8 Mark		
c. Ass	ignment:	4 Mark		
d. Sen	ninar:	4 Mark		
External A	ssessment (80 Marks)	Duration $2\frac{1}{2}$ Hours,	No of Questions: 27	
	PAT	TERN OF QUESTION F	PAPER	
Patter	n Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short ansv	ver 15	15	2	25
Paragraph	n 8	8	5	35
Essay	4	2	10	20

Total

80

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module I: Analytic Functions, Elementary Functions and Mappings	22	
Module II: Integration in the Complex plane	22	
Module III: Series	18	
Module IV: Residues	18	

*List of Practicals (using any software)

- Plotting of complex functions on the complex plane.
- Study the convergence of sequences of complex numbers through plotting.
- Study the convergence/divergence of infinite series of complex numbers by plotting their sequences of partial sum.
 - plotting their sequences of partial sum.
- Plotting the region of convergence of series.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

- James Ward Brown, Ruel Vance Churchill: Complex variables and applications (8/e), McGrawHill Higher Education, (2009) ISBN: 0073051942
- 2. Alan Jeffrey: Complex Analysis and Applications (2/e), Chapman and Hall/CRC Taylor Francis Group (2006), ISBN:978-1-58488-553-5
- Saminathan Ponnusamy, Herb Silverman: Complex Variables with Applications Birkhauser Boston(2006) ISBN:0-8176-4457-4
- John H. Mathews & Russell W. Howell : Complex Analysis for Mathematics and Engineering (6/e)
- 5. H A Priestly: Introduction to Complex Analysis (2/e), Oxford University Press, (2003), ISBN: 0-19-852562-1
- Jerrold E Marsden, Michael J Hoffman: Basic Complex Analysis (3/e) W.H Freeman, N.Y. (1999) ISBN:0-7167-2877-X

COURSE CODE - BMT6 B12 CORE COURSE XIII: CALCULUS OF MULTI VARIABLE-2				
Marks				
Credit Hours/week		Internal	External	Total
4	5	20	80	100

Course Outcomes

	Expected Course Outcome	Learning	
CO No.	Upon completion of this course, students will be	Domain	PSO No
	able to;	Domain	
COI	Learn the geometrical interpretation of the	Understand	PSO3
	gradient.		1000
	Understand how we use the gradient to get		
CO2	various local information about the function	Understand	PSO2
	including tangent planes and normal lines.		
	Develop various techniques such as second		
CO3	derivative tests to find relative and extreme of	Analyze	PSO3
	multi variable functions.		
CO4	Develop Lagrange's multiplier methods to find	Analyze	PSO2
004	absolute extreme of a multivariable function	Analyzo	1002
	Define the double integrals and triple integrals		
	as a limit of Riemann sum and to see their	Remember	PSO3, PSO4
CO5	interpretations as average value, volume under	and Apply	& PSO5
	graphs, volume of a solid, area of a region, total		QT 300
	mass from density		
	Demonstrate the ability to think critically by		
CO6	setting up and solving application problems	Understand	PSO2&PSO3
	involving double and triple integrals.		
C07	<i>Learn</i> iterated integrals and Fubini's theorem.	Understand	PSO1
CO8	Evaluate the double integrals in polar	Evaluate	PSO3

	coordinates and triple integrals in cylindrical		
	coordinates and spherical coordinates.		
	Understand the idea of vector fields, curl,		
CO9	divergence, their evaluation, path	Understand	PSO4&PSO6
	independence and conservative field.		
CO10	Study the major theorems: Greens theorem,	Anglyzo	PSO6
COIO	Divergence theorem and Stokes theorem.	Analyze	P306

TEXT	Calculus: Soo T Tan Brooks/Cole, Cengage Learning (2010) ISBN: 978-0-534-
	46579-7

	COURSE CONTENT				
Module 1. I	Module 1. Functions of several variables 20 Hours				
13.7	Tangent Planes and Normal Lines- Geometric Interpretation	on of the Gradient,			
	Tangent Planes and Normal Lines, Using the Tangent Plane	e of f to			
	approximate the Surface $z = f(x,y)$				
13.8.	Extrema of Functions of two variables - Relative and Abso	lute Extrema,			
	Critical Points–Candidates for Relative Extrema, The Second Derivative Test				
	for Relative Extrema, Finding the Absolute Extremum Value	es of a Continuous			
	Function on a Closed Set				
13.9.	Lagrange Multipliers- Constrained Maxima and Minima, T	he Method of			
	Lagrange Multipliers, Lagrange theorem, Optimizing a Fun	ction Subject to			
	Two Constraints				
14.1.	Double integrals- An Introductory Example, Volume of a S	olid between a			
	Surface and a Rectangle, The Double Integral over a Recta	angular Region,			
	Double Integrals over General Regions, Properties of Doub	le Integrals			
14.2.	Iterated Integrals-Iterated Integrals over Rectangular Reg	ions, Fubini's			
	Theorem for Rectangular Regions, Iterated Integrals over N	Nonrectangular			
	Regions, y- simple and x- simple regions, advantage of ch	nanging the order			
	of integration.				

Module 2.	Multiple Integral	20 Hours	
14.3.	Double integrals in polar coordinates- Polar Rectangles, D	ouble Integrals	
	over Polar Rectangles, Double Integrals over General Regio	ons, r-simple	
	region, method of evaluation		
14.5:	Surface Area- Area of a Surface $z = f(x,y)$, Area of Surfaces with Equations		
	y=g(x,z) and $x=h(y,z)$.		
14.6.	Triple integrals- Triple Integrals Over a Rectangular Box, de	finition, method of	
	evaluation as iterated integrals, Triple Integrals Over Gene	ral Bounded	
	Regions in Space, Evaluating Triple Integrals Over General	Regions,	
	evaluation technique.		
14.7.	Triple Integrals in cylindrical and spherical coordinates- e	valuation of	
	integrals in Cylindrical Coordinates, Spherical Coordinates	3	
14.8	Change of variables in multiple integrals- Transformations	s, Change of	
	Variables in Double Integrals [only the method is required; derivation		
	omitted], illustrations, Change of Variables in Triple Integrals		
Module 3.	Vector Fields	20 Hours	
15.1.	Vector Fields- V.F. in two- and three-dimensional space, C	Conservative Vector	
	Fields		
15.2.	Divergence and Curl- Divergence- idea and definition, Cu	rl- idea and	
	definition		
15.3.	Line Integrals- Line integral w.r.t. arc length-motivation, bo	sic idea and	
	definition, Line Integrals with Respect to Coordinate Variab	les, orientation of	
	curve Line Integrals in Space, Line Integrals of Vector Fields	3	
15.4.	Independence of Path and Conservative Vector Fields-pa	th independence	
	through example, definition, fundamental theorem for line	integral, Line	
	Integrals Along Closed Paths, work done by conservative v	ector field,	
	Independence of Path and Conservative Vector Fields, Det	ermining Whether	
	a Vector Field Is Conservative, test for conservative vector	field Finding a	

Module 4.	Vector Analysis 20 Hours		
15.5.	Green's Theorem- Green's Theorem for Simple Regions, proof of theorem for		
	simple regions, finding area using line integral, Green's Theorem for More		
	General Regions, Vector Form of Green's Theorem		
15.6.	Parametric Surfaces-Why We Use Parametric Surfaces, Finding Parametric		
	Representations of Surfaces, Tangent Planes to Parametric Surfaces, Area of		
	a Parametric Surface [derivation of formula omitted]		
15.7.	Surface Integrals-Surface Integrals of Scalar Fields, evaluation of surface		
	integral for surfaces that are graphs, [derivation of formula omitted; only		
	method required] Parametric Surfaces, evaluation of surface integral for		
	parametric surface, Oriented Surfaces, Surface Integrals of Vector Fields-		
	definition, flux integral, evaluation of surface integral for graph [method		
	only], Parametric Surfaces, evaluation of surface integral of a vector field for		
	parametric surface [method only].		
15.8.	The Divergence Theorem-divergence theorem for simple solid regions		
	(statement only), illustrations, Interpretation of Divergence		
15.9.	Stokes Theorem-generalization of Green's theorem –Stokes Theorem,		
	illustrations, Interpretation of Curl.		

MODE OF TRANSACTION

Lecture Method

Problem Solving Method

Questioning method

MODE OF ASSESSMENT

Internal Assessment (20 Marks)

a. Classroom participation: 4 Mark

b.	Test papers I:	8 Mark
C.	Assignment:	4 Mark
d.	Seminar:	4 Mark

External Assessment (80 Marks) Duration $2\frac{1}{2}^{\frac{1}{2}}$ Hours, No of Questions: 27

PATTERN OF QUESTION PAPER

Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	15	15	2	25
Paragraph	8	8	5	35
Essay	4	2	10	20
	1		Total	80

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module1:	20	
Module 2:	20	
Module 3:	20	
Module 4:	20	

*List of Practicals (using any software)	

- Plotting tangent planes and normal lines of a surface.
- Finding relative and absolute extrema by plotting of its graphs.
- Plotting volume of a solid between a surface and a rectangle.
- Sketching parametric curves.
- Tracing of conics in cartesian coordinates/ polar coordinates.
- Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic,

paraboloid, hyperbolic paraboloid using cartesian coordinates.

• Evaluating limits by plotting of graphs of multi variable functions.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

- Joel Hass, Christopher Heil & Maurice D Weir: Thoma's Calculus(14/e) Pearson (2018) ISBN: 013443898I
- 2. Robert A Adams & Christopher Essex: Calculus, A complete Course (8/e), Pearson Education Canada (2013), ISBN: 032187742X
- 3. John Rogawski: Multi variable Calculus early Transcendentals (2/e) W.H. Freeman and Company 2012, ISBN: 1-4292-3187-4
- Anton, Biven & Davis: Calculus early Transcendentals(10/e), John Wliey & Sons, Inc.(2012) ISBN: 978-0-470
- 5. James Stewart: Calculus (8/e), Brooks/Cole Cengage Learning (2016), ISBN: 978-1-285-74062-1

COURSE CODE – BMT6B13 CORE COURSE XIII: DIFFERENTIAL EQUATIONS				
Credit	Hours/week	Marks		
Credit	HOUIS/WEEK	Internal	External	Total
4	5	20	80	100

Course Outcomes

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	<i>Identify</i> a number of areas where the modelling process results in a differential equation.	Remember	PSO3
CO2	Discuss what an ODE is, what it means by its solution, how to classify DEs, what it means by an IVP and so on.	Understand	PSO1
CO3	solve DEs that are in linear, separable and in exact forms and also to analyze the solution.	Apply	PSO4
CO4	Distinguish between linear and non-linear DEs and conditions for occurrence of their solutions.	Understand	PSO2
CO5	<i>Illustrate</i> the theory and method for solving a a first order IVP and second order linear homogeneous and nonhomogeneous equations with constant coefficients.	Analyze	PSO4
CO6	Determine the Laplace Transform and Inverse Laplace Transform of a function.	Evaluate	PSO4
C07	Solve differential equations using Laplace method.	Apply	PSO4
CO8	<i>Explain</i> periodic functions and their Fourier series expansion.	Apply	PSO4

CO9	Solve partial differential equations using the method of separation of Variables.	Apply	PSO4
-----	--	-------	------

	Elementary Differential Equations and Boundary Value Problems (11/e): William E
TEXT	Boyce, Richard C Diprima And Douglas B Meade John Wiley & Sons (2017) ISBN:
	1119169879.

	COURSE CONTENT				
Pre-Requ	Pre-Requisites				
1.1: Some I	1.1: Some Basic Mathematical Models; Direction Fields				
1.2: Solutio	ons of some Differential equations				
1.3: Classi	fication of Differential Equations				
Module 1.	First-Order Differential Equations	22 Hours			
2.1.	Linear Differential Equations; Method of Integrating Factors				
2.2.	Separable Differential Equations				
2.3.	2.3. Modelling with First Order Differential Equations				
2.4.	2.4. Differences Between Linear and Nonlinear Differential Equations				
2.6.	2.6. Exact Differential Equations and Integrating Factors				
2.8.	2.8. The Existence and Uniqueness Theorem (proof omitted)				
Module 2	Second-Order Differential Equations	23 Hours			
3.1.	3.1. Homogeneous Differential Equations with Constant Coefficients				
3.2.	Solutions of Linear Homogeneous Equations; the Wronskian				
3.3.	Complex Roots of the Characteristic Equation				

3.4.	Repeated Roots; Reduction of Order	
3.5.	Nonhomogeneous Equations; Method of Undetermined Coe	efficients
3.6.	Variation of Parameters	
Module 3.	Laplace Transform	15 Hours
6.1.	Definition of the Laplace Transform	
6.2.	Solution of Initial Value Problems	
6.3.	Step Functions	
6.5.	Impulse Functions	
6.6.	The Convolution Integral	
Module 4	. Fourier Series	20 Hours
10.1.	Two-Point Boundary Value Problems	
10.2.	Fourier Series	
10.3.	The Fourier Convergence Theorem	
10.4.	Even and Odd Functions	
10.5.	Separation of Variables; Heat Conduction in a Rod	
10.7.	The Wave Equation: Vibrations of an Elastic String	

MODE OF TRANSACTION

Lecture Method

Problem Solving Method

Questioning method

MODE OF ASSESSMENT

Internal Assessment (20 Marks)			
a. Classroom participation:	4 Mark		
b. Test papers I:	8 Mark		
c. Assignment:	4 Mark		
d. Seminar:	4 Mark		

External Assessment (80 Marks) Duration $2\frac{1}{2}$ Hours, No of Questions: 27

PATTERN OF QUESTION PAPER

Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	15	15	1	25
Paragraph	8	8	5	35
Essay	4	2	10	20
	1		Total	80

MODULE WISE MARK DISTRIBUTION			
Module	Mark		
Module1: First-Order Differential Equations	22		
Module 2: Second-Order Differential Equations	24		
Module 3: Laplace Transform	16		
Module 4: Fourier Series	18		

*List of Practicals (using any software)

- Plotting the solutions of some famous model like Population model, Predatory-prey, Epidemic model of influenza models, etc.
- Plotting of first and second order solutions of ordinary differential equations.
- Plotting the solutions of heat and wave equations.

• Finding the Laplace transforms of some functions.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

- 1. Dennis G Zill & Michael R Cullen: Differential Equations with Boundary Value Problems(7/e): Brooks/Cole Cengage Learning (2009) ISBN: 0-495-10836-7
- 2. R Kent Nagle, Edward B. Saff & Arthur David Snider: Fundamentals of Differential Equations(8/e) Addison-Wesley (2012) ISBN: 0-321-74773-9
- 3. C. Henry Edwards & David E. Penney: Elementary Differential Equations (6/e) Pearson Education, Inc. New Jersey (2008) ISBN 0-13-239730-7
- 4. John Polking, Albert Boggess & David Arnold: Differential Equations with Boundary Value Problems(2/e) Pearson Education, Inc New Jersey (2006) ISBN 0-13-186236-7
- 5. Henry J. Ricardo: A Modern Introduction to Differential Equations(2/e) Elsevier Academic Press (2009) ISBN: 978-0-12-374746-4
- 6. James C Robinson: An Introduction to Ordinary Differential Equations Cambridge University Press (2004) ISBN: 0-521-53391-0

ELECTIVE COURSE SYLLABUS

SEMESTER 6

COURSE CODE – BMT6E01 ELECTIVE COURSE I: GRAPH THEORY					
Oradita	Heurelweek		Marks		
Credits	Hours/week	Internal	External	Total	
2	3	15	60	75	

Course Outcomes

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	Understand and apply the fundamental concepts in graph theory.	Understand	PSO1
CO2	Apply graph theory-based tools in solving practical problems.	Apply	PSO2
CO3	Develop the proof writing skills.	Create	PSO5
CO4	Analyze properties of graphs.	Analyse	PSO4
CO5	Understand trees and their properties.	Understand	PSO1
CO6	Analyze Distinguish between Eulerian and Hamiltonian graphs.	Analyze	PSO4
C07	Analyze planar graphs.	Analyse	PSO4

TEXT	A First Look at Graph Theory: John Clark & Derek Allan Holton, Allied Publishers,
	First Indian Reprint 1995.

	COURSE CONTENT					
Module 1	Module 1. Basic Concepts of Graphs 13 Hours					
1.1	Definition of a graph					
1.2	Graphs as models					
1.3	More definitions					
1.4	Vertex degrees					
1.5	Sub graphs					
1.6	Paths and Cycles					
1.7	1.7 Matrix representation of a graph [up to Theorem 1.6; proof of Theorem 1.5 is					
	omitted]					
Module 2	Module 2. Trees 13 Hours					
2.1.	2.1. Definitions and Simple Properties					
2.2.	Bridges [Proof of Theorem 2.6 and Theorem 2.9 are omitted]]				
2.3	Spanning Trees					
2.6.	Cut Vertices and Connectivity [Proof of Theorem 2.21omitted	1]				
Module 3	. Planar Graphs	13 Hours				
3.1.	Euler Tour [up to Theorem 3.2, proof of Theorem 3.2 omitted]				
3.3.	Hamiltonian Graphs [Proof of Theorem 3.6 omitted]					
5.1.	Plane and Planar graphs [Proof of Theorem 5.1 omitted]					
5.2.	5.2. Euler's Formula [Proofs of Theorems 5.3 and Theorem 5.6 omitted]					

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MODE OF ASSESSMENT				
Internal Assessment (15 Marks)				
a. Classro	oom participation:	3 Mark		
b. Test po	ipers:	6 Mark		
c. Assign	ment:	3 Mark		
d. Semino	ar:	3 Mark		

External Assessment (60 Marks) Duration 2 Hours, No of Questions: 21

PATTERN OF QUESTION PAPER					
Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks	
Short answer	12	12	2	20	
Paragraph	7	7	5	16	
Essay	2	1	10	24	
	1		Total	60	

MODULE WISE MARK DISTRIBUTION			
Module	Mark		
Module 1: Basic Concepts of Graphs	20		
Module 2: Trees	20		
Module 3: Planar Graphs	20		

*List of Practicals (using any software)

- Drawing of graphs using Techard.
- Constructing spanning trees.
- Find the number of spanning trees in a graph.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

- 1. R.J. Wilson: Introduction to Graph Theory, 4th ed., LPE, Pearson Education
- 2. J.A. Bondy& U.S.R. Murty: Graph Theory with Applications
- 3. J. Clark & D.A. Holton: A First Look at Graph Theory, Allied Publishers
 - 4. N. Deo: Graph Theory with Application to Engineering and Computer Science, PHI.

COURSE CODE – BMT6B14(E02) ELECTIVE COURSE II: TOPOLOGY OF METRIC SPACES				
Credit	Hours/week	Marks Internal External Total		
2	3	15	60	75

* Examination will be held at the end of sixth semester

Course Outcomes

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	<i>Define</i> the notion of metric space and construct the topology by using the metric.	Remember	PSO1
CO2	Explain the notion of distance, open/ closed balls, open/ closed sets, dense subsets and related concepts.	Understand	PSO1
соз	<i>Express</i> the concept of boundary points, convergence of sequences and Cauchy sequences.	Understand	PSO1
CO4	<i>Develop</i> the concept of boundedness, uniform and pointwise convergence.	Analyze	PSO4
CO5	Construct new examples of metric spaces with interesting topological properties.	Create	PSO4

техт	Metric Spaces: Mícheál Ó Searcóid Undergraduate Mathematics Series Springer-
IEAI	Verlag London Limited (2007) ISBN: 1-84628-369-8

COURSE CONTENT				
Aodule 1	: Metrics, Distance and Boundary	18 Hours		
Met	ics			
1.1.	Metric Spaces			
1.3.	Metric Subspaces and Metric Super spaces			
1.4.	Isometries			
1.6.	Metrics on Products			
1.7.	Metrics and Norms on Linear Spaces- [example1.7.8 omitte	d]		
Dist	ance			
2.1.	Diameter			
2.2.	Distances from Points to Sets			
2.3.	Inequalities for Distances			
2.4.	Distances to Unions and Intersections			
2.5.	Isolated Points			
2.6.	Accumulation Points			
2.7.	Distances from Sets to Sets			
Bou	ndary			
3.1.	Boundary Points			
3.2.	Sets with Empty Boundary			
3.3.	Boundary Inclusion			
3.6.	Closure and Interior			
3.7.	Inclusion of Closures and Interiors			
lodule 2	: Open, Closed and Dense subsets; Balls	15 Hours		
Оре	n, Closed and Dense subsets	1		
4.1.	Open and Closed Subsets			
4.2.	Dense Subsets			
4.3.	Topologies			
4.4.	Topologies on Subspaces and Superspaces			
4.5.	Topologies on Product Spaces			

Balls	3	
5.1.	Open and Closed Balls	
5.2.	Using Balls	
odule 3	: Convergence and Bounds	15 Hours
Con	vergence	
6.1.	Definition of Convergence for Sequences	
6.2.	Limits	
6.4.	Convergence in Subspaces and Super spaces	
6.6.	Convergence Criteria for Interior and Closure	
6.7.	Convergence of Subsequences	
6.8.	Cauchy Sequences	
Bour	nds	
7.1.	Bounded Sets	
7.4.	Spaces of Bounded Functions	
7.6.	Convergence and Boundedness	
7.7.	Uniform and Pointwise Convergence	

MODE OF TRANSACTION

Lecture Method

Problem Solving Method

Questioning Method

MODE OF ASSESSMENT		
Internal Assessment (15 Marks)		
a.	Class Room Participation:	3 Mark
b.	Assignment:	3 Mark
c.	Test Paper 1:	6 Mark
d.	Seminar:	3 Mark

External Assessment (60 Marks):

PATTERN OF QUESTION PAPER				
Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	12	12	2	20
Paragraph	7	7	5	30
Essay	2	1	10	10
	I		Total	60

MODULE WISE MARK DISTRIBUTION	
Module	Mark
Module 1: Metrics, Distance and Boundary	24
Module 2: Open, Closed and Dense subsets; Balls	18
Module 3: Convergence and Bounds	18

REFERENCES:

- 1. R.J. Wilson: Introduction to Graph Theory, 4th ed., LPE, Pearson Education
- 2. J.A. Bondy& U.S.R. Murty: Graph Theory with Applications
- 3. J. Clark & D.A. Holton: A First Look at Graph Theory, Allied Publishers
- 4. E.T.Copson: Metric Spaces Cambridge University Press(1968)ISBN:0 52135732 2
- 5. Irving Kaplansky: Set Theory and Metric Spaces Allyn and Bacon, Inc. Boston (1972)

- 6. S. Kumaresan: Topology of Metric Spaces Alpha Science International Ltd.(2005) ISBN: 1-84265-250-8
- 7. Wilson A Sutherland: Introduction to Metric and Topological Spaces(2/e) Oxford University Press (2009)ISBN:978-0-19-956308-1
- Mohamed A. Khamsi and William A. Kirk: An Introduction to Metric Spaces and Fixed Point Theory John Wiley & Sons, Inc (2001) ISBN 0-471-41825-0

COURSE CODE - BMT6E03

ELECTIVE COURSE III: MATHEMATICAL PROGRAMMING WITH PYTHON AND LATEX				
Credit	Hours/week		Mark	
orodit	nourof wook	Internal	External	Total
2	3	15	60	75

Course Outcomes

	-	Learning	
CO No. Up	on completion of this course, students will be	Domain	PSO No
ab	le to;		
CO1	derstand one of the most popular and robust	Understand	PSO1
	neral purpose programming language Python.		P501
CO2	derstand how scientific programming can be	Apply	5000
	rformed using Python.		PSO6
CO3	arn different data types, keywords, packages	Understand	50.05
	d modules in Python.	onderstand	PSO5
Vis	sualize mathematics concepts and get the		
CO4 abi	ility to demonstrate mathematical ideas	Analyse	PSO4
thr	rough Graphics.		
CO5	derstand Applications of Python Programming.	Apply	DCOG
			PSO6
CO6	derstand the basic commands to prepare an	Understand	0000
	out file in LATEX.		PSO2
CO7	le to change the type style of a document.	Understand	PSO2
			P302
CO8 Ab	le to create commands and environments for	Create	PSO6
	ecific purposes.		F300
The	e students will be able to typeset documents		
CO9 wh	nich involve accents of foreign languages,	Create	PSO6
ma	athematical symbols, long tables pictures etc		

according to international standards.	

TEXT	Python for Education - Learning Maths and Physics using Python: Ajith Kumar B.P	
	Inter University Accelerator Centre 2010	

COURSE CONTENT

Course Contents

The course has Theory Part (external evaluation) and Practical Part (only for internal evaluation). A student has to maintain a practical record of the work. Practical should be carried out in a GNU/Linux computer system.

THEORY

Module 1. Basics of Python Programming

15 Hours

Programming in Python: Two modes of using Python, Interpreter Variables and Data Types, Operators and their Precedence, Python Strings, Slicing, Python Lists, Mutable and Immutable Types, Input from the Keyboard, Iteration: while and for loops, Python Syntax, Colon & Indentation, Syntax of 'for loops', Conditional Execution: if, elif and else, Modify loops : break and continue, Line joining, Functions, Scope of variables, Optional and Named Arguments, More onStrings and Lists, split and join, Manipulating Lists, Copying Lists, Python Modules and Packages, Different ways to import, Packages, File Input/Output, The pickle module, Formatted Printing, Exception Handling

Module 2. Applications of Python Programming

20 Hours

Turtle Graphics:

Arrays and Matrices: The NumPy Module, Vectorized Functions. (sec. 2.1 to 2.19, 3.1 to

3.2)

Data visualization: The Matplotlib Module, plotting mathematical functions, Famous Curves, Power Series, Fourier Series, 2D plot using colors, Meshgrids, 3D Plots, Mayavi, 3D visualization. (sec. 4.1 to 4.6, 4.8 to 4.10)

Module 3. Latex

15 Hours

Type setting using LATEX: Document classes, Modifying Text, Dividing the document, Environments, Typesetting Equations, Arrays and matrices, Floating bodies, Inserting Images, Example, Application (sec. 5.1 to 5.8)

A practical examination, based on following topics, should be conducted for the internal assessment only.

Part A: Plotting

- 1. Cartesian plot of polynomials showing all zeros
- 2. Cartesian plot of quotient of polynomials
- 3. Cartesian plot of functions showing asymptotes
- 4.Parametric plot of curves
- 5.Polar plot of curves
- 6.Plot Pi chart
- 7. Plot 3D curves
- 8.Plot 3D surfaces

Part B: LATEX

- 1. General documentation
- 2.Tables
- 3. Writing equations

MODE OF TRANSACTION	
Lecture Method	
Problem Solving Method	
Questioning Method	
Practical Method	

110	DE	-			APPART.
MO	DE	OF.	A22	F22L	MENT

Internal Assessment (15 Marks)				
Class Room Participation:	3 Mark			
Assignment:	3 Mark			
Fest Paper 1:	6 Mark			
Seminar:	3 Mark			
	Class Room Participation: Assignment: Test Paper 1:			

External Assessment (75 Marks): Duration: 2 Hours, No. Of Questions: 21

PATTERN OF QUESTION PAPER						
Pattern	Ceiling of Marks					
Short answer	12	12	2	20		
Paragraph	7	7	5	30		
Essay	2	1	10	10		
	I		Total	60		

MODULE WISE MARK DISTRIBUTION			
Module	Mark		
Module 1: Basics of Python Programming	30		
Module 2: Applications of Python Programming	14		
Module 3: Latex	16		

REFERENCES:

- 1. Saha, Amit: Doing Math with Python: Use Programming to Explore Algebra, Statistics, Calculus, and More! No Starch Press, 2015
- 2. Nunez-Iglesias, Juan, Stefan van der Walt, and Harriet Dashnow: "Elegant SciPy: The Art of Scientific Python." (2017).
- 3. Stewart, John M.: Python for scientists. Cambridge University Press, 2017.
- 4. Kinder, Jesse M., and Philip Nelson: A student's guide to Python for physical modelling. Princeton University Press, 2018.
- 5. McGreggor, Duncan: Mastering matplotlib. Packt Publishing Ltd, 2015
- 6. Lamport, Leslie. LaTeX: A Document Preparation System (2/e) Pearson Education India, 1994.
- 7. Hahn, Jane: LATEX for Everyone. Prentice Hall PTR, 1993

COURSE CODE - BMT6E04 ELECTIVE COURSE IV: INTRODUCTION TO GEOMETRY					
Oredit		Mark			
Credit	Hours/week	Internal	External	Total	
2	3	15	60	75	

Course Outcomes

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No.
COI	Understand the basic facts about conics.	Understand	PSO 1
CO2	Understand the concept of geometry and transformations, affine transformations and their properties.	Understand	PSO 1
СОЗ	Understand the basis results of the projective geometry.	Understand	PSO 1

TEXT	Geometry(2/e): David A Brannan, Mathew F Espen, Jeremy J Gray Cambridge
	University Press(2012) ISBN: 978-1-107-64783-1

COURSE CONTENT				
Module 1	Conics	10 Hours		
1.1.1.	Conic Sections			
1.1.3.	Focus-Directrix Definition of the Non-Degenerate Conics	s- definition, parabola		
	in standard form, ellipse in standard form, hyperbo	la in standard form,		

Rectangular Hyperbola, Polar Equation of a Conic.

1.1.4. Focal Distance Properties of Ellipse and Hyperbola-Sum of Focal Distances of

Ellipse, Difference of Focal Distances of Hyperbola.

1.2. Properties of Conics- Tangents, equation of tangents to ellipse, hyperbola, and parabola, polar of a point w.r.t. unit circle, normal, Reflections, The Reflection Law, Reflection Property of the Ellipse, Reflection Property of the Hyperbola, Reflection Property of the Parabola, Conics as envelopes of tangent families.

1.3 Recognizing Conics- equation of conic in general form, identifying a conic.

Module 2. Affine Geometry	20 Hours

- 2.1 Geometry and Transformations What is Euclidean Geometry? Isometry, Euclidean properties, Euclidean transformation, Euclidean-Congruence.
- 2.2: Affine Transformations and Parallel Projections- Affine Transformations, Basic Properties of Affine Transformations, Parallel Projections, Basic Properties of Parallel Projections, Affine Geometry, Midpoint Theorem, Conjugate Diameters Theorem, Affine Transformations and Parallel Projections, affine transformations as composite of two parallel projections.
- 2.3: Properties of Affine Transformations-Images of Sets Under Affine Transformations, The Fundamental Theorem of Affine Geometry, Proofs of the Basic Properties of Affine Transformations.
- 2.4: Using the Fundamental Theorem of Affine Geometry-The Median Theorem, Ceva's Theorem, converse, Menelaus' Theorem, converse [subsection "2.4.4. Barycentric Coordinates" omitted].
- 2.5: Affine Transformations and Conics-Classifying Non-Degenerate Conics in Affine Geometry, A few affine properties, Applying Affine Geometry to Conics.

Module 3	. Projective Geometry: Lines 18 Hours
3.1.	Perspective- Perspective in Art, Mathematical Perspective, Desargues'
	Theorem.
3.2.	The Projective Plane \mathbb{RP}^2 -Projective Points, Projective Lines, Embedding

Planes, An equivalent definition of Projective Geometry.

- 3.3. Projective Transformations- The Group of Projective Transformations, Some Properties of Projective Transformations, Fundamental Theorem of Projective Geometry, [The subsection "3.3.4. Geometrical Interpretation of Projective Transformations" omitted].
- 3.4. Using the Fundamental Theorem of Projective Geometry- Desargues' Theorem and Pappus' Theorem [The subsection "3.4.2. Duality "omitted].
- 3.5. Cross-Ratio-Another Projective Property, properties of cross ratio, Unique Fourth Point Theorem, Pappus' Theorem, Cross-Ratio on Embedding Planes, An Application of Cross-Ratio.

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MODE OF ASSESSMENT				
Internal Assessment (15 Marks)				
a. Class Room Participation:	3 Mark			
b. Assignment:	3 Mark			
c. Test Paper 1:	6 Mark			

d. Seminar:

3 Mark

External Assessment (60 Marks): Duration: 2 Hours, No. of Questions: 21

PATTERN OF QUESTION PAPER Marks for each Pattern Total No. of No. of Ceiling of questions questions to be question Marks answered Short answer 12 12 2 20 7 7 5 30 Paragraph 2 1 Essay 10 10 Total 60

MODULE WISE MARK DISTRIBUTION	
Module	Mark
Module 1: Projective Geometry: Lines	13
Module 2: Affine Geometry	25
Module 3: Projective Geometry: Lines	22

*List of Practicals (using any software)

- Sketching parabola, ellipse, hyperbola and rectangular hyperbola using Cartesian coordinates.
- Tracing of conics in Cartesian coordinates/ Polar coordinates.
- Plotting tangent planes.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

- 1. George A Jennings: Modern Geometry with Applications Universitext, Springer (1994) ISBN:0-387-94222-X
- 2. Walter Meyer: Geometry and its Application(2/e) Elsever, Academic Press (2006)ISBN:0-12-369427-0
- 3. Judith N Cederberg : A Course in Modern Geometries(2/e) UTM,Springer (2001) ISBN: 978-1-4419-3193-1
- J Ryan: Euclidean and Non Euclidean Geometry-An Analytic Approach Cambridge University Press, International Student Edition (2009) ISBN:978-0-5 21-12707-3
- 5. David C Kay: College Geometry: A Unified Approach CRC Press Tayloe and Francic Group(2011) ISBN: 978-1-4398-1912-8 (Ebook-PDF)
- 6. James R Smart: Modern Geometries(5/e) Brooks/Cole Publishing Co.,(1998) ISBN:0-534-35188-3
- 7. Michele Audin: Geometry Universitext, Springer(2003)ISBN:3-540-43498-4

OPEN COURSE SYLLABUS

SEMESTER 5

COURSE CODE – BMT5D01				
OPEN COURSE 1: APPLIED CALCULUS				
	Hours/week	Marks		
Credits	HOUIS/WEEK	Internal	External	Total
3	3	15	60	75

Course Outcomes

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	<i>Identify</i> the independent and dependent variables of a function and compute its domain and range.	Analyze	PSO3
CO2	<i>Evaluate</i> functions given by formulas at given points.	Evaluate	PSO3
CO3	Plot the graphs of straight lines and conics.	Create	PSO1
CO4	Compute limits.	Evaluate	PSO1
CO5	Check continuity.	Evaluate	PSO1
CO6	Compute derivatives and write down the equation of the tangent line.	Evaluate	PSO5
C07	Determine whether the function is increasing or decreasing using derivatives.	Analyse	PSO6

TEXTCalculus: For Business, Economics, and the Social and Life Sciences BRIEF (10/e):
Laurence D. Hoffmann, Gerald L. Bradley McGraw-Hill (2010) ISBN: 978-0-
07-353231-8

	COURSE CONTENT		
Module 1	Aodule 1. Limits and Derivatives		
Fund	tions, Graphs, and Limits		
1.1:	Functions		
1.2.	The Graph of a Function		
1.3.	Linear Functions		
1.4.	Functional Models		
1.5.	Limits		
1.6.	One sided limits and continuity		
Diffe	rentiation: Basic Concepts		
2.1.	The Derivative		
2.2.	Techniques of Differentiation		
2.3.	Product and quotient rules: Higher order derivatives [proof o	f product and	
	quotient rules omitted]		
2.4.	The Chain rule [proof of general power rule omitted]		
Module 2	. Applications of Derivative	18 Hours	
2.5.	Marginal Analysis and Applications using increments		
2.6.	Implicit Differentiation and Related Rates		
Ado	litional Applications of Derivative		
3.1.	Increasing and Decreasing Functions; Relative Extrema,		
3.2.	Concavity and Points of Inflection		
3.4.	Optimization; Elasticity of Demand		
3.5.	Additional Applied Optimization		
Module 3	. Integration	14 Hours	
Integ	gration		
5.1.	Antidifferentiation: The Indefinite Integral		
5.2.	Integration by Substitution		
5.3.	The Definite Integral and the Fundamental Theorem of Calculus statement of FTC required; Justification given at the end of the se omitted]		

MODE OF TRANSACTION

Active Learning: Active learning is an approach that emphasizes student-centred learning. This method encourages students to participate in the learning process actively. Teachers can use a variety of techniques such as group work, discussions, and problembased learning to facilitate active learning.

Visual Aids: Mathematics is a subject that involves a lot of abstract concepts and symbols. Visual aids such as diagrams, graphs, charts, and videos can help students understand and remember mathematical concepts.

Real-Life Applications: Students often struggle with understanding the relevance of mathematical concepts. By using real-life examples and applications, teachers can make the subject more engaging and meaningful to students.

Cooperative Learning: Cooperative learning involves students working together in small groups to solve problems or complete tasks. This method helps students develop teamwork and communication skills, while also reinforcing their understanding of mathematical concepts.

Technology: Technology can be a powerful tool in teaching mathematics. Tools such as interactive whiteboards, graphing calculators, and educational software can help students visualize and understand mathematical concepts better.

Differentiated Instruction: Students have different learning styles, abilities, and interests. Teachers can differentiate instruction by providing different learning materials and activities that cater to the individual needs of each student.

	MODE OF ASSESSMENT Internal Assessment (15 Marks)				
Intern					
a.	Classroom participation:	3 Mark			
b.	Test papers I:	6 Mark			
C.	Assignment:	3 Mark			
d.	Seminar:	3 Mark			
Evtorn	al Assessment (60 Marks)	Duration 2 Hours No of Questions: 21			

External Assessment (60 Marks) Duration 2 Hours, No of Questions: 21

PATTERN OF QUESTION PAPER				
Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	12	12	2	20
Paragraph	7	7	5	30
Essay	2	1	10	10
			Total	60

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module I: Limits and Derivatives	20	
Module II: Applications of Derivative	22	
Module III: Integration	18	

- 1 Soo T Tan: Applied Calculus for the Managerial, Life, and social sciences(8/e) Cengage Learning(2011) ISBN: 978-0-495-55969-6
- 2 Ron Larson: Brief Calculus An Applied Approach(8/e) Houghton Mifflin Company (2009) ISBN: 978-0-618-95847-4

- 3 Stefan Waner, Steven R. Costenoble: Finite Mathematics and Applied Calculus(5/e) Brooks/Cole Cengage Learning (2011) ISBN: 978-1-4390-4925-9
- 4 Frank C. Wilson, Scott Adamson: Applied Calculus Houghton Mifflin Harcourt Publishing Company (2009)
- 5 Geoffrey C. Berresford, Andrew M. Rockett: Applied Calculus(7/e) Cengage Learning (2016) ISBN: 978-1-305-08531-2

COURSE CODE – BMT5D02 OPEN COURSE 2: DISCRETE MATHEMATICS FOR BASIC AND APPLIED SCIENCES				
		Marks		
Credit	Hours/week	Internal	External	Total
3	3	15	60	75

	Expected Course Outcome	Learning	
CO No.	Upon completion of this course, students will be	Domain	PSO No
	able to;	Domain	
COI	Identify correct and incorrect arguments.	Analyze	PSO4
CO2	Understand the criteria for the evaluation of	Understand	PSO1
002	arguments.	Understand	F301
CO3	Understand the scientific way of decision	Understand	5000
003	making using the laws of logic.	Understand	PSO3
CO4	Understand the concept of algebraic structures	Understand	PSO3
C04	in Mathematics.	Understand	P303
	Identify a given algebraic structure as		
CO5	belonging to a particular family of structures	Apolyza	PSO5
005	and to state the characteristic properties of the	Analyze	
	members of the family.		
CO6	Understand the concept of groups and derive	Understand	PSO3
000	basic theorems on groups.	Understand	PS03
C07	Define the concept of Boolean algebra as an	Remember	PSO1
00/	algebraic structure and list its properties.	Remember	F301
C08	Understand the applications of Boolean algebra	Understand	PSO5
008	in switching circuits.	Understand	F300
C09	Define a Graph and identify different classes of	Remember	PSO3
09	graphs.	KEITIEITIDEI	F303
C010	Understand various applications of Graph	Understand	PSO5
CUIU	theory.	understand	r300

TEXT	Discrete Mathematics; Proofs, Structures and Applications (3/e):
	Rowan Garnier & John Taylor CRC Press, Taylor & Francis Group (2009)
	ISBN:978-1-4398-1280- 8(hardback)/ 978-1-4398-1281-5 (eBook - PDF)

COURSE CONTENT				
lodule 1	14 Hours			
	Logic			
1.1.	Propositions and Truth Values			
1.2.	Logical Connectives and Truth Tables- Disjunction, Condi	tional Propositions,		
	Bi conditional Propositions			
1.3.	Tautologies and Contradictions			
1.4.	Logical Equivalence and Logical Implication- More about	conditionals		
1.5.	The Algebra of Propositions- The Duality Principle, Substitu	ution Rule		
1.6.	Arguments			
1.7.	Formal Proof of the Validity of Arguments			
1.8.	Predicate Logic- The Universal Quantifier, The Existential C)uantifier,		
	Two-Place Predicates, Negation of Quantified Proposition	al Functions		
1.9.	Arguments in Predicate Logic- Universal Specification (US), Universal			
	Generalization (UG), Existential Specification (ES), Existent (EG)	al Generalization		
/lodule 2	. Algebraic Structures and Boolean Algebra	18 Hours		
Alge	braic Structures			
8.1.				
	Binary Operations and Their Properties			
8.2.	Algebraic Structures- Semigroups			
8.2. 8.3.				
	Algebraic Structures- Semigroups	Groups of		
8.3.	Algebraic Structures- Semigroups More about Groups	, Groups of		
8.3.	Algebraic Structures- Semigroups More about Groups Some Families of Groups- Cyclic Groups, Dihedral Groups	, Groups of		
8.3. 8.4.	Algebraic Structures- Semigroups More about Groups Some Families of Groups- Cyclic Groups, Dihedral Groups Permutations	Groups of		
8.3. 8.4. 8.5. 8.6.	Algebraic Structures- Semigroups More about Groups Some Families of Groups- Cyclic Groups, Dihedral Groups Permutations Substructures	Groups of		
8.3. 8.4. 8.5. 8.6.	Algebraic Structures- Semigroups More about Groups Some Families of Groups- Cyclic Groups, Dihedral Groups Permutations Substructures Morphisms	, Groups of		
8.3. 8.4. 8.5. 8.6. Boo	Algebraic Structures- Semigroups More about Groups Some Families of Groups- Cyclic Groups, Dihedral Groups Permutations Substructures Morphisms	Groups of		
8.3. 8.4. 8.5. 8.6. Boo 10.1.	Algebraic Structures- Semigroups More about Groups Some Families of Groups- Cyclic Groups, Dihedral Groups Permutations Substructures Morphisms lean Algebra Introduction	Groups of		
8.3. 8.4. 8.5. 8.6. 10.1. 10.2.	Algebraic Structures- Semigroups More about Groups Some Families of Groups- Cyclic Groups, Dihedral Groups Permutations Substructures Morphisms lean Algebra Introduction Properties of Boolean Algebras	, Groups of		

10.6. Minimization of Boolean Expressions

Module 3. Graph Theory and Applications of Graph Theory

16 Hours

Graph Theory

- 11.1. Definitions and Examples
- 11.2. Paths and Cycles
- 11.3. Isomorphism of Graphs
- 11.4. Trees
- 11.5. Planar Graphs [proof of Euler formula omitted]
- 11.6. Directed Graph

Applications of Graph Theory

- 12.2. Rooted Trees
- 12.3. Sorting
- 12.4. Searching Strategies

MODE OF TRANSACTION

Lecture Method

Problem Solving Method

Questioning method

MODE OF ASSESSMENT			
Interno	al Assessment (15 Marks)		
a.	Classroom participation:	3 Mark	
b.	Test papers:	6 Mark	
C.	Assignment:	3 Mark	
d.	Seminar	3 Mark	

External Assessment (60 Marks) Duration: 2 Hours, No of Questions: 21

PATTERN OF QUESTION PAPER					
Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks	
Short answer	12	12	2	20	
Paragraph	7	7	5	30	
Essay	2	1	10	10	
			Total	60	

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module I: Logic	18	
Module II: Algebraic Structures and Boolean Algebra	23	
Module III: Graph Theory and Applications of Graph Theory	19	

- 1. Edward R. Scheinerman: Mathematics A Discrete Introduction(3/e) Brooks/Cole, Cengage Learning (2013)ISBN: 978-0-8400-4942-1
- 2. Gary Haggard, John Schlipf, Sue Whitesides: Discrete Mathematics for Computer Science Thomson Brooks/Cole (2006)ISBN:0-534-49601-x
- 3. DPAcharjya, Sreekumar: Fundamental Approach to Discrete Mathematics New Age International Publishers (2005) ISBN: 978-81-224-2304-4
- 4. Gary Chartrand, Ping Zhang: Discrete Mathematics Waveland Press, Inc(2011)ISBN: 978-1-57766-730-8
- Tom Jenkyns, Ben Stephenson: Fundamentals of Discrete Math for Computer Science A Problem-Solving Primer Springer-Verlag London (2013) ISBN: 978-1-4471-4068-9.
- 6. Faron Moller, Georg Struth: Modelling Computing Systems Mathematics for Computer Science Springer-Verlag London (2013) ISBN 978-1-84800-321-

COURSE CODE – BMT5D03 OPEN COURSE 3: LINEAR MATHEMATICAL MODELS				
			Marks	
Credit	Hours/week	Internal	External	Total
3	3	15	60	75

Course Outcomes

	Expected Course Outcome	Learning	
CO No.	Upon completion of this course, students will be	Domain	PSO No
	able to;	Domain	
	Compare Echelon Method and Gauss Jordan		50.01
COI	method to solve linear systems	Evaluate	PSO1
	Explain matrix operations and compute the		PSO1
CO2	inverse of a matrix.	Apply	
CO3	Solve linear programming problems	Ammhy	PSO1
003	geometrically.	Apply	PSO4
	Determine drawbacks of geometric methods		PSO1
CO4	and to solve LP problems more effectively using	Evaluate	PSO5
	Simplex method.		
	Construct real life problems as linear models		PSO2
CO5	and solve them.	Create	PSO5
			PSO6

Text Finite Mathematics and Calculus with Applications (9/e) Margaret L. Lial, Raymond N. Greenwell & Nathan P. Ritchey Pearson Education, Inc(2012) ISBN: 0-321-74908-1

COURSE CONTENT			
odule 1.	Linear Functions, Systems of Linear Equations and Matrices	16 Hours	
1.1.	Slopes and Equations of Lines		
1.2.	Linear Functions and Applications		
1.3.	The Least Squares Line		
2.1.	Solution of Linear Systems by the Echelon Method		
2.2.	Solution of Linear Systems by the Gauss-Jordan Method		
2.3.	Addition and Subtraction of Matrices		
2.4.	Multiplication of Matrices		
2.5.	Matrix Inverses		
dule 2	. Linear Programming: The Graphical Method	10 Hours	
3.1.	Graphing Linear Inequalities	1	
3.2.	Solving Linear Programming Problems Graphically		
3.3.	Applications of Linear Programming		
odule 3	. Linear Programming: The Simplex Method	13 Hours	
4.1.	Slack Variables and the Pivot	1	
4.2.	Maximization Problems		

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

	N	MODE OF ASSESSMEI	NT	
Internal Assessr	nent (15 Marks)			
a. Classrooi	m participation:	3 Mark		
b. Test pape	ers I:	6 Mark		
c. Assignme	ent:	3 Mark		
d. Seminar:		3 Mark		
External Assess		Duration 2 Hours, I		
Pattern	Total No. of	No. of	Marks for each	Ceiling of
	questions	questions to be answered	question	Marks
		unswered		
Short answer	12	12	2	20
	12 7		2 5	20 30
Short answer Paragraph Essay		12	_	

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module I: Linear Functions, Systems of Linear Equations and Matrices	18	
Module II: Linear Programming: The Graphical Method	16	
Module III: Linear Programming: The Simplex Method	26	

*List of Practicals (using any software)

• Solving linear programming problems.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

- 1. Soo T Tan: Finite Mathematics For the Managerial, Life, and social sciences(11/e) Cengage Learning (2015) ISBN: 1-285-46465-6
- 2. Ronald J. Harshbarger, James J. Reynolds: Mathematical Applications for the Management, Life, and Social Sciences (9/e) *Brooks/Cole Cengage Learning (2009) ISBN*: 978-0-547-14509-9
- 3. Stefan Waner, Steven R. Costenoble: Finite Mathematics and Applied Calculus(5/e) Brooks/Cole Cengage Learning (2011) ISBN: 978-1-4390-4925-9
- 4. Michael Sullivan: Finite Mathematics An Applied Approach(11/e) John Wiley & Sons, Inc (2011) ISBN: 978-0470-45827-3
- 5. Howard L. Rolf: Finite Mathematics Enhanced Edition(7/e) Brooks/Cole, Cengage Learning (2011) ISBN:978-0-538-49732-9
- 6. Seymour Lipschutz, John J. Schiller, R. Alu Srinivasan: Beginning Finite Mathematics Schaum's Outline Series, McGraw-Hill (2005)

COURSE CODE – BMT5D04 OPEN COURSE 3: MATHEMATICS FOR DECISION MAKING				
Credit	Hourobyook		Marks	
Credit	Hours/week	Internal	External	Total
3	3	15	60	75

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	Classify data and analyse various data collection techniques.	Analyse	PSO1 PSO4 PSO5
CO2	Compare various types of data with the use of frequency charts and appropriate graphs.	Evaluate	PSO1 PSO5
СОЗ	Explain concepts like measures of central tendency, measures of variation and measures of position.	Understand	PSO1
CO4	Describe basic probability concepts, conditional probability, addition rule and other basic theories in probability.	Remember	PSO1
CO5	Analyse various probability distributions of discrete and continuous variables.	Analyse	PSO1 PSO6
CO6	Examine the normal distribution, which is an important continuous probability distribution in inferential statistics.	Apply	PSO1 PSO5 PSO6

TEXT	Elementary Statistics: Picturing the World (6/e) Ron Larson & Betsy Farber
	Pearson Education, Inc (2015) ISBN: 978-0-321-91121-6

	COURSE CONTENT	
dule 1	. Introduction to Statistics and Descriptive Statistics	14 Hours
Intro	oduction to Statistics	
1.1.	An Overview of Statistics	
1.2.	Data Classification	
1.3.	Data Collection and Experimental Design	
Des	criptive Statistics	
2.1.	Frequency Distributions and their Graphs	
2.2.	More Graphs and Displays	
2.3.	Measures of Central Tendency	
2.4.	Measures of Variation	
2.5.	Measures of Position	
dule 2	2. Probability	12 Hours
3.1.	Basic Concepts of Probability and Counting	
3.2.	Conditional Probability and the Multiplication Rule	
3.3.	The Addition Rule	
3.4.	Additional topics in probability and counting	
dule 3	B. Discrete Probability Distribution and Normal Probability	22 Hours
	Distribution	
Disc	rete Probability Distribution	
4.1.	Probability Distributions	
4.2	Binomial Distributions	
4.3.	More Discrete Probability Distributions	
Norr	nal Probability Distribution	
5.1.	Introduction to Normal distributions and Standard Normal Distributions	
5.2:	Normal Distributions: Finding Probabilities	

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MODE OF ASSESSMENT				
al Assessment (15 Marks)				
Classroom participation:	3 Mark			
Test papers I:	6 Mark			
Assignment:	3 Mark			
Seminar:	3 Mark			
	al Assessment (15 Marks) Classroom participation: Test papers I: Assignment:	al Assessment (15 Marks)Classroom participation:3 MarkTest papers I:6 MarkAssignment:3 Mark		

External Assessment (60 Marks) Duration 2 Hours, No of Questions: 21

PATTERN OF QUESTION PAPER				
Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	12	12	2	20
Paragraph	7	7	5	30
Essay	2	1	10	10
	1		Total	60

MODULE WISE MARK DISTRIBUTION	
Module	Mark
Module I: Introduction to Statistics and Descriptive Statistics	18
Module II: Probability	26
Module III: Discrete Probability Distribution and Normal Probability	16
Distribution	

- 1. Mario F. Triola: Elementary Statistics(13/e): Pearson Education, Inc(2018) ISBN: 9780134462455
- 2. Neil A. Weiss: Elementary Statistics(8/e) Pearson Education, Inc (2012) ISBN: 978-0-321-69123-1
- 3. Nancy Pfenning: Elementary Statistics: Looking at Big Picture Brooks/Cole Cengage Learning (2011) ISBN: 978-0-495-01652-6
- 4. Frederick J Gravetter, Larry B. Wallnau: Statistics for the Behavioral Sciences (10/e) Cengage Learning (2017) ISBN: 978-1-305-50491-2
- 5. Seymour Lipschutz, John J. Schiller, R. Alu Srinivasan: Beginning Finite Mathematics Schaum's Outline Series, McGraw-Hill (2005)
- Michael Sullivan: Finite Mathematics An Applied Approach(11/e) John Wiley & Sons, Inc (2011) ISBN: 978-0470-45827-3

COMPLEMENTARY COURSE SYLLABUS

SEMESTER 1

	CO	URSE CODE - BMT	1C01	
	COMPLEMEN	TARY COURSE I: N	1athematics 1	
Oredit			Marks	
Credit	Hours/week	Internal	External	Total
3	4	15	60	75

	Expected Course Outcome	Learning	
CO No.	Upon completion of this course, students will be	Domain	PSO No
	able to;		
	Discuss The fundamental ideas of limit,		PSO1
COI	continuity, and differentiability.	Understand	PSO2
			PSO3
	Apply Increasing and decreasing functions,		PSO2
CO2	local maxima, minima, concavity, inflection	Apply	PSO3
	points and drawing graphs using these ideas.		PSO4
	Utilize Find the solution of maximum-minimum		PS02
CO3	problems using the idea of derivatives	Analyse	PSO3
			PSO5
	Utilize The Mean Value Theorem for derivatives		PS02
CO4	and L'Hospital rule.	Analyse	PSO3
			PSO6
	Make use of Applications of definite integrals		PS02
CO5	(arc length, area, volume and area of surface	Apply	PSO3
	of revolution).		PSO4

TEXT	George B. Thomas Jr. and Ross L. Finney: Calculus, LPE, Ninth edition, Pearson
	Education.

COURSE CONTENT		
Module 1. Limits and Continuity		7 Hours
Rates of change and limits, Rules for finding limits, E	Extensions of th	ne limit
concepts, Continuity, Tangent Lines (Sections 1.1 (fro	om limits of fur	nction values
onwards), 1.2, 1.4 (omit precise definitions of one-sic	ded limits onwo	ards), 1.5, 1.6)
Module 2. Derivatives		9 Hours
Derivative of a function, Differentiation Rules, Rate	s of change, 1	he Chain Rule
Implicit Differentiation and rational exponents		
(Section 2.1, 2.2, 2.3, 2.5, 2.6)		
Module 3. Application of Derivatives and L'Hopital's Rule		19 Hours
Application of derivatives: Related rates of change,	Extreme value	es of a function
The mean value theorem, First derivative test, Grap	hing with y' an	d y". Limits as :
$ ightarrow \pm \infty$. Asymptotes and Dominant Terms. L'Hopital's	Rule.	
(Section 2.7, 3.1, 3.2, 3.3, 3.4, 3.5 and see section 6.6)		
		17 Hours
Module 4. Integration and its Applications		
Module 4. Integration and its Applications Integration: Properties of definite integrals, areas a	Ind the Mean	value theorem
	ind the Mean	value theorem
Integration: Properties of definite integrals, areas o		
The Fundamental theorem. (Section 4.6, 4.7).	Finding Volur	nes by slicinç
Integration: Properties of definite integrals, areas of The Fundamental theorem. (Section 4.6, 4.7). Application of Integrals: Areas between curves,	Finding Volur	nes by slicinç

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

		N	ODE OF ASSESSME	NT	
ntern	al Assessm	nent (15 Marks)			
a.	Classroon	n participation:	3 Mark		
b.	Test pape	rs I:	6 Mark		
C.	Assignme	nt:	3 Mark		
d.	Seminar:		3 Mark		
Extern	al Assessn		Duration 2 Hours, I		
Po	attern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
	attern answer	Total No. of	questions to be	Marks for each	Ceiling of Marks 20
	answer	Total No. of questions	questions to be answered	Marks for each question	Marks
Short	answer raph	Total No. of questions 12	questions to be answered 12	Marks for each question 2	Marks

MODULE WISE MARK DISTRIBUTION	
Module	Mark
Module 1. Limits and Continuity	8

Module 2. Derivatives	10
Module 3. Application of Derivatives and L'Hopital's Rule	22
Module 4. Integration and its Applications	20

*List of Practicals (using any software)

- Plotting graph of functions.
- Evaluating limits by plotting of its graphs.
- Finding relative and absolute extrema by plotting of its graphs.
- Finding area under a curve and verifying definite integral of a positive function and area under its graph are same.

Obtaining surface of revolution of curves.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

- 1. Soo T Tan: Calculus Brooks/Cole, Cengage Learning (2010) ISBN 0-534-46579-X
- 2. Gilbert Strang: Calculus Wellesley Cambridge Press (1991) ISBN:0-9614088-2-0
- 3. Ron Larson. Bruce Edwards: Calculus(11/e) Cengage Learning (2018) ISBN: 978-1-337-27534-7
- 4. Robert A Adams & Christopher Essex: Calculus Single Variable (8/e) Pearson Education Canada (2013) ISBN: 0321877403
- 5. Joel Hass, Christopher Heil & Maurice D. Weir: Thomas' Calculus(14/e) Pearson (2018) ISBN 0134438981
- 6. Jon Rogawski & Colin Adams: Calculus Early Transcendentals (3/e) W. H. Freeman and Company (2015) ISBN: 1319116450
- 7. Murray R. Spiegel, Advanced Calculus, Schaum's Outline Series.
- Jerrold Marsden & Alan Weinstein: Calculus I (2/e) Springer-Verlag New York Inc (1985) ISBN 0-387-90974-5
- 9. Jerrold Marsden & Alan Weinstein: Calculus II (2/e) Springer-Verlag New York Inc (1985) ISBN 0-387-90975-3

SEMESTER 2

COURSE CODE – BMT2C02 COMPLEMENTARY COURSE II: Mathematics 2				
Cradit	Hourobyook		Marks	
Credit Hours/week Internal External Total				Total
3 4 15 60 75				

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
соі	Discuss Find the derivatives and anti- derivatives of hyperbolic and inverse hyperbolic functions	Evaluate	PSO1 PSO2 PSO3
CO2	Apply Represent points in polar coordinates, their graphing and Find the area and arc length of polar curves.	Analyse	PSO1 PSO2 PSO3
CO3	<i>Make use of</i> Find the rank and inverse of a matrix using elementary row transformations.	Evaluate	PSO1 PSO2 PSO4
CO4	Solve a system of linear equations using matrix theory.	Understand	PSO1 PSO3 PSO4
C05	Utilize Find the characteristic roots values and the corresponding characteristic vectors of a matrix	Evaluate	PSO1 PSO2
C06	Judge Verify Cayley Hamilton Theorem and understand its applications	Apply	PSO2 PSO3

	Determine Find the limit of sequences,		PSO1
C07	convergence and divergence of series.	Analyse	PSO2
			PSO3
<u></u>	Apply Represent a function as Power Series,	Understand	PSO2
C08	Taylor Series and Maclaurin Series	Understand	PSO3

TEXT 1	George B Thomas, Jr and Ross L Finney: CALCULUS, LPE, Ninth edition, Pearson
	Education.
TEXT 2	Frank Ayres JR: Matrices, Schaum's Outline Series, TMH Edition.

COURSE CONTENT				
Module 1. Hyperbolic Functions and Polar coordinatesTEXT 116 Hours				
Hyperbolic Functions- Definitions and Identiti	es, Derivatives	and Integrals,		
Inverse Hyperbolic Functions, Derivatives and Int	egrals.			
Polar coordinates, Graphing in Polar Coordina	tes, Polar equat	ions for conic		
sections, Integration in Polar coordinates.				
(Section 6.10, 9.6, 9.7, 9.8, 9.9 of the Text 1)				
Module 2. Matrices TEXT 2 14 Hours				
Rank of a Matrix, Non-Singular and Singular matrices, Elementary				
Transformations, Inverse of an elementary Tra	Transformations, Inverse of an elementary Transformations, Row Canonical			
form, Normal form. Systems of Linear equation	form, Normal form. Systems of Linear equations: Homogeneous and Non-			
Homogeneous Equations, Characteristic equat	Homogeneous Equations, Characteristic equation of a matrix; Characteristic			
roots and characteristic vectors. Cayley Hamil	on Theorem (st	atement only)		
and simple applications (relevant sections of Te	and simple applications (relevant sections of Text 2).			
Module 3. Sequences TEXT 1 5 Hours				
Limit of Sequences of Numbers, Theorems for calculating limits of sequences				
(Excluding Picard's Method)				
(Sections 8.1, 8.2 of Text 1)				

Module 4. Infinite Series	TEXT 1	17 Hours
Infinite series, The ratio and root test for series of nonnegative terms, Power		
Series, Taylor and Maclaurin Series.		
(Sections 8.3, 8.6, 8.8, 8.9 of the Text 1)		

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

	MODE OF ASSESSMENT				
Intern	al Assessm	nent (15 Marks)			
a.	Classroom	n participation:	3 Mark		
b.	Test pape	rs I:	6 Mark		
c.	c. Assignment:		3 Mark		
d.	Seminar:		3 Mark		
External Assessment (60 Marks)		Duration 2 Hours, I	No of Questions: 21		
	PATTERN OF QUESTION PAPER				
Po	attern	Total No. of	f No. of Marks for each Ceiling questions to be		Ceiling of

	questions	answered	question	Marks
Short answer	12	12	2	20
Paragraph	7	7	5	30
Essay	2	1	10	10
			Total	60

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module 1: Hyperbolic Functions and Polar coordinates	18	
Module 2: Matrices	16	
Module 3: Sequences	6	
Module 4: Infinite Series	20	

*List of Practicals (using any software)

- Plotting of graphs of hyperbolic functions.
- Matrix operation (addition, multiplication, inverse, transpose).
- Reorganizing systems of linear equations into matrix form and solve.
- Calculating the eigen values and eigen vectors of a matrix.
- Plotting of recursive sequences.
- Study the convergence of sequences through plotting.
- Calculate the sum 1 + 1/2 + 1/3 + 1/4 + ... + 1/n.

Study the convergence/divergence of infinite series by plotting their sequences of partial sum.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

- 1. Soo T Tan: Calculus Brooks/Cole, Cengage Learning(2010)ISBN 0-534-46579-X
- 2. Gilbert Strang: Calculus Wellesley Cambridge Press(1991)ISBN:0-9614088-2-0
- Ron Larson. Bruce Edwards: Calculus(11/e) Cengage Learning(2018) ISBN: 978-1-337-27534 7
- 4. Robert A Adams & Christopher Essex : Calculus Single Variable (8/e) Pearson Education Canada (2013) ISBN: 0321877403
- 5. Joel Hass, Christopher Heil & Maurice D. Weir : Thomas' Calculus(14/e) Pearson (2018) ISBN 0134438981

SEMESTER 3

COURSE CODE – BMT3C03 COMPLEMENTARY COURSE III: Mathematics 3				
Cradit	Hourolwook		Marks	
Credit	Credit Hours/week		External	Total
3	5	15	60	75

CO No.	Expected Course OutcomeUpon completion of this course, students will be able to;	Learning Domain	PSO No
соі	Understand Find the derivatives and anti- derivatives of hyperbolic and inverse hyperbolic functions	Understand	PSO1
CO2	Compute Find limits, continuity and differentiability of functions of several variables.	Apply	PSO6
CO3	Explain Work on the idea of limit, continuity, and derivative of vector-valued functions.	Understand	PS01
CO4	Understand the concept of gradient and directional derivative and their geometrical interpretation	Understand	PS01
CO5 Make use of Find the rank and inverse of a matrix using elementary row transformations.		Apply	PS06
C06	C06 Utilize Find the characteristic roots values and the corresponding characteristic vectors of a matrix		PS04
C07	Analyse Perform basic mathematical operations with complex numbers in cartesian	Analyse	PS04

	and polar forms.		
C08	Determinecontinuity,differentiability,analyticity of a complex function.	Evaluate	PS04
C09	Compare Relate harmonic functions and analytic functions.	Analyse	PS04

TEXT 1	George B Thomas, Jr and Ross L Finney: CALCULUS, LPE, Ninth edition, Pearson Education.
TEXT 2	Erwin Kreyszig: Advanced Engineering Mathematics, Eighth Edition, Wiley, India.

COURSE CONTENT	COURSE CONTENT			
Module 1. Numerical Integration and Functions of Several	ΤΕΧΤ Ι	12 Hours		
Variables				
Numerical Integration: Trapezoidal Rule, Simps	on's Rule. (S	Section 4.9 of		
Text I).				
	Functions of Several Variables, Limits and Continuity, Partial Derivatives, differentiability, Chain rule (Sections 12.1, 12.2, 12.3, 12.4, 12.5 of the Text 1))			
Module 2. Vector Differential CalculusTEXT 214 Hours				
A quick Review of vector algebra, Inner product	and vector	product in \mathbb{R}^2		
and \mathbb{R}^3 .	and \mathbb{R}^3 .			
Vector and scalar functions and Fields, Derivativ	res, Curves, 1	langents, Arc		
Length, Gradient of a scalar field; Directional Derivative, Divergence of a				
vector field, Curl of a Vector Field. (Sections 8.1, 8.2, 8.3, 8.4, 8.5, 8.9, 8.10,				
8.11 of Text (2)).				
Module 3. Vector Integral Calculus	TEXT 2	14 Hours		

Line Integrals, Independence of path, Green's Theorem in the Plane (without proof), surfaces for Surface Integrals, Surface Integrals, Triple Integrals, Divergence theorem of Gauss and Stoke's theorem (without proofs).

(Sections 9.1, 9.2, 9.4, 9.5, 9.6, 9.7, 9.9, 9.10 of Text (2))

Module 4. Complex Analysis	TEXT 2	12 Hours

A Quick Review: Complex Numbers, Complex Plane, Polar Form of Complex Numbers, Powers and Roots. Derivatives, Analytic functions, Cauchy-Riemann Equations, Laplace's Equation (All proofs omitted) (Section 12.1, 12.2, 12.3, 12.4, 13.1, 13.2, 13.3, 13.4 (statements only) of the Text (2))

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MODE OF ASSESSMENT		
Internal Assessment (15 Marks)		
a. Classroom participation:	3 Mark	
b. Test papers I:	6 Mark	
c. Assignment:	3 Mark	

d. Seminar:

3 Mark

External Assessment (60 Marks) Duration 2 Hours, No of Questions: 21

PATTERN OF QUESTION PAPER Total No. of No. of Marks for each Ceiling of Pattern questions questions to be question Marks answered 12 12 2 20 Short answer 7 7 5 30 Paragraph 2 1 Essay 10 10 Total 60

MODULE WISE MARK DISTRIBUTION	
Module	Mark
Module 1: Numerical Integration and Functions of Several Variables	14
Module 2: Vector Differential Calculus	16
Module 3: Vector Integral Calculus	16
Module 4: Complex Analysis	14

*List of Practicals (using any software)

- Approximating definite integral by using Simpson's rule and Trapezoidal rule.
- Evaluating limits by plotting of graphs of multi variable functions.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

- 1. Soo T Tan: Calculus Brooks/Cole, Cengage Learning (2010) ISBN 0-534-46579-X
- 2. Gilbert Strang: Calculus Wellesley Cambridge Press (1991) ISBN:0-9614088-2-0

- 3. Ron Larson. Bruce Edwards: Calculus(11/e) Cengage Learning (2018) ISBN: 978-1-337-27534-7
- 4. Robert A Adams & Christopher Essex: Calculus several Variable (7/e) Pearson Education Canada (2010) ISBN: 978-0-321-54929-7
- 5. Jerrold Marsden & Anthony Tromba : Vector Calculus (6/e) W. H. Freeman and Company ISBN 978-1-4292-1508-4
- 6. Peter V O'Neil: Advanced Engineering Mathematics (7/e) Cengage Learning(2012)ISBN: 978-1-111-42741-2
- Erwin Kreyszig : Advanced Engineering Mathematics(10/e) John Wiley & Sons(2011) ISBN: 978-0-470-45836-5
- 8. Glyn James: Advanced Modern Engineering Mathematics(4/e) Pearson Education Limited (2011) ISBN: 978-0-273-71923-6

SEMESTER 4

COURSE CODE – BMT4C04

COMPLEMENTARY COURSE IV: Complementary Course - 4

Cradit	Hours/week		Marks	
Credit		Internal	External	Total
3	5	15	60	75

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	<i>Learn</i> the major classifications of differential equations.	Understand	PSO1
CO2	<i>Learn</i> the conditions for the existence of solution of first and second order initial value problems.	Understand	PSO1
CO3	<i>Learn</i> to solve the first order differential equations that are of linear, separable, exact, and Bernoulli's forms	Understand	PSO1
CO4	<i>Find</i> the orthogonal trajectories of family of curves.	Analyse	PSO4
CO5	Familiar with the theory and method of solving second order linear homogeneous and non- homogeneous equations with constant coefficients.	Analyse	PSO4
CO6	Learn the method of reduction of order to find a second solution of linear second order equation by reducing to linear first order equation.	Apply	PSO2
C07	<i>Learn</i> the method of solution of Euler Cauchy	Understand	PSO1

	equations.		
C08	Determine the Laplace Transform and inverse	Apply	PSO2
	Laplace Transform of a function.		
CO9	Learn the linearity and shifting theorems	Understand	PSO1
CO10	Acquire the knowledge of solving a differential	Fvaluate	PSO4
	equation using the Laplace method.	Evaluate	1304
COll	Understand periodic functions and their Fourier	Understand	PSO1
	series expansion		
CO12	Learn the basic concepts of partial differential	Understand	PSO1
	equations	ondorotand	1001

TEXT	Erwin Kreyszig: Advanced Engineering Mathematics, Eighth Edition, Wiley, India

COURSE CONTENT

COORSE CONTENT	COURSE CONTENT	
Module 1. Ordinary Differential Equations	18 Hours	
Basic concepts and ideas, Geometrical meaning of y' = f (>	κ, γ), Direction Fields,	
Separable Differential Equations. Exact Differential Equ	uations; Integrating	
Factors, Linear Differential Equations; Bernoulli Equ	uation, Orthogonal	
Trajectories of Curves.		
(Sections 1.1, 1.2, 1.3, 1.5, 1.6, 1.8)		

Module 2. Linear Differential equations of Second and Higher order20 HoursLinear Differential equations of Second and Higher order: Differential Operators,
Euler-Cauchy Equation, Wronskian, Nonhomogeneous Equations, Solutions by
Undetermined Coefficients, Solution by variation of Parameters.
(Sections 2.1, 2.2, 2.3, 2.4, 2.6, 2.7, 2.8, 2.9, 2.10).22 Hours

Laplace Transforms: Laplace Transform, Inverse Transform, Linearity, Shifting,

Transforms of Derivatives of Integrals, Differential Equations. Unit step Function, Second Shifting Theorem, Dirac Delta Function, Differentiation and integration of Transforms, Convolution, Integral Equations, Partial Fractions, Differential Equations.

(Sections 5.1, 5.2, 5.3, 5.4, 5.5, 5.6).

Module 4. Fourier Series and Partial differential Equations

16 Hours

Fourier Series: Periodic Functions, Trigonometric Series, Fourier Series, Even and Odd functions, Half-range Expansions.

(Sections 10.1, 10.2, 10.4 – Excluding Proofs)

Partial differential Equations: Basic Concepts. (Sections 11.1).

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MO	DE OF ASSESSMENT
Internal Assessment (15 Marks)	
a. Classroom participation:	3 Mark
b. Test papers I:	6 Mark
c. Assignment:	3 Mark

d. Seminar:

3 Mark

External Assessment (60 Marks) Duration 2 Hours, No of Questions: 21

PATTERN OF QUESTION PAPER Total No. of No. of Marks for each Ceiling of Pattern questions questions to be question Marks answered 12 12 2 20 Short answer 7 7 5 30 Paragraph 2 1 Essay 10 10 Total 60

MODULE WISE MARK DISTRIBUTION		
Mark		
14		
16		
17		
13		

*List of Practicals (using any software)

- Plotting of first and second order solutions of ordinary differential equations.
- Finding the Laplace transforms of some functions.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

- 1. Peter V O'Neil: Advanced Engineering Mathematics(7/e) *Cengage Learning (2012) ISBN*: 978-1-111-42741-2
- Erwin Kreyszig: Advanced Engineering Mathematics(10/e) John Wiley & Sons (2011) ISBN: 978-0-470-45836-5

- 3. Alan Jeffrey: Advanced Engineering Mathematics Harcourt/Academic Press (2002) ISBN: 0-12-382592-X
- 4. Glyn James: Advanced Modern Engineering Mathematics(4/e) Pearson Education Limited (2011) ISBN: 978-0-273-71923-6
- 5. Dennis G Zill: Advanced Engineering Mathematics(6/e) Jones & Bartlett Learning, LLC (2018) ISBN: 978-1-284-10590

COURSE CODE – BMT1C01 (CS) COMPLEMENTARY COURSE V: Mathematics 1				
Cradit	Hourobyook		Marks	
Credit Hours/week Interna		Internal	External	Total
3	4	15	60	75

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	Discuss relations on a set, various types of relations, equivalence relation.	Understand	PSO1
CO2	Discuss the basic concepts in set theory.	Understand	PSO1
СОЗ	Discuss the cartesian product- definition and examples	Understand	PSO1
CO4	Understand the concept of equivalence classes and partitions of a set.	Understand	PSO1
CO5	Explain the negation of a statement, statements with quantifiers and its negation.	Apply	PSO2
CO6	Analyse Increasing and decreasing functions, local maxima, minima, concavity, inflection points and drawing graphs using these ideas.	Analyse	PSO4
C07	Determine To find the solution of maximum- minimum problems using the idea of derivatives.	Evaluate	PS04

TEXT 1	S. Lipschutz: Set Theory and related topics (Second Edition), Schaum Outline
	Series, Tata McGraw-Hill Publishing Company, New Delhi.
TEXT 2	George B. Thomas Jr. and Ross L. Finney: Pearson Education
TEXT 3	Discrete Mathematics and its Applications: Press (2004)

COURSE CONTENT						
Module 1. Set theory and Relations	TEXT I		11 Hours			
Set theory: Sets, subsets, Set operations	Set theory: Sets, subsets, Set operations and the laws of set theory and Venn					
diagrams. Examples of finite and infini	te sets.	Finite sets a	nd the counting			
principle. Empty set, properties of empty	ty set, s	et operations	, Difference and			
Symmetric difference, Algebra of sets, Du	uality, Cl	asses of sets,	Power sets.			
(Sections 1.6, 1.7 & 1.9 of Text (1)).						
Relations: Product set, Relations (Directed	d graph	of relations of	n set is omitted).			
Composition of relations, Types of relat	tions, Pc	artitions, Equiv	alence relations			
with examples.						
(Chapter 3 of Text 1 excluding 3.7).						
Module 2. Logics	TEX	T 3	7 Hours			
Propositions- definition, Boolean (logic)) variab	les, Truth Val	ue, Conjunction,			
Boolean expression, Disjunction (in	clusive	and exclus	sive), Negation,			
Implication, Converse, Inverse and Con	ntra pos	itive, Bicondit	ional statement,			
Order of Precedence, Tautology Contro	adiction	and Conting	ency [Switching			
Networks 'omitted]						
Logical equivalences- laws of logic [Equivale	nt Switching	Networks 'Fuzzy			
logic& Fuzzy decisions' omitted]						
Quantifiers- universal & existential, predic	Quantifiers- universal & existential, predicate logic.					
(As in sections 1.1, 1.2 & 1.3 of Text 3).	(As in sections 1.1, 1.2 & 1.3 of Text 3).					
Module 3. Limits and Continuity and Derivatives	TEXT 2		16 Hours			

Limits and Continuity: Rates of change and limits, Rules for finding limits, Extensions of the limit concepts, Continuity, Tangent Lines (Sections 1.1 (from limits of function values onwards), 1.2, 1.4 (omit precise

definitions of one-sided limits onwards), 1.5, 1.6 of Text (2))

Derivatives: Derivative of a function, Differentiation Rules, Rates of change, The Chain Rule, Implicit Differentiation and rational exponents. (Section 2.1, 2.2, 2.3, 2.5, 2.6 of Text 2)

Module 4. Application of Derivatives and L'Hopital's Rule	TEXT 2	18 Hours	
		1	

Application of derivatives: Related rates of change, Extreme values of a

function. The mean value theorem, First derivative test, Graphing with y' and y".

Limits as $x \to \pm \infty$. Asymptotes and Dominant Terms, L'Hopital's Rule. (Section

2.7, 3.1, 3.2, 3.3, 3.4, 3.5 and see section 6.6 of Text 2).

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MODE OF ASSESSMENT			
Intern	al Assessment (15 Marks)		
a.	Class Room Participation	3 Mark	
b.	Assignment	3 Mark	
c.	Seminar	3 Mark	
d.	Test Paper	6 Mark	

External Assessment (60 Marks): Duration 2 Hours, No of Questions: 21

PATTERN OF QUESTION PAPER				
Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	12	12	2	20
Paragraph	7	7	5	30
Essay	2	1	10	10
	I		Total	60

MODULE WISE MARK DISTRIBUTION	Marks
Module 1: Set theory and Relations	12
Module 2: Logics	8
Module 3: Limits and Continuity and Derivatives	17
Module 4: Application of Derivatives and L'Hopital's Rule	15

*List of Practicals (using any software)

- Plotting graph of functions.
- Evaluating limits by plotting of its graphs.
- Finding relative and absolute extrema by plotting of its graphs.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

1. Soo T Tan: Calculus Brooks/Cole, Cengage Learning (2010) ISBN 0-534-46579-X

- 2. Gilbert Strang: Calculus Wellesley Cambridge Press (1991) ISBN:0-9614088-2-0
- 3. Ron Larson. Bruce Edwards: Calculus(11/e) Cengage Learning (2018) ISBN: 978-1-337-27534-7
- 4. Steven R Lay, Analysis with an introduction to proof, 5th edition, Pearson, 2014
- 5. Ajith Kumar et al, A foundation course in Mathematics, Narosa, India, 2018
- 6. Kenneth H Rosen, Discrete Mathematics and it's Applications, 6th edition, Tata Mc Grawhill

COURSE CODE –BMT2C02(CS) COMPLEMENTARY COURSE VI: Mathematics 2					
				Marks	
Credit	Hours/week	Internal External Total			
3	4	15	60	75	

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	Discuss Mean value Theorem for integrals and Fundamental Theorem of Calculus	Understand	PSO1
CO2	<i>Represent</i> points in polar coordinates and their graphing.	Understand	PSO1
СОЗ	Represent a function as Power Series, Taylor Series and Maclaurin Series.	Understand	PSO1
CO4	Utilize Find the derivatives and anti-derivatives of hyperbolic and inverse hyperbolic functions.	Analyse	PSO4
CO5	Utilize Find the area and arc length of polar curves.	Analyse	PSO4
CO6	<i>Make use of</i> Find the limit of sequences, convergence and divergence of series.	Apply	PSO6

TEXT	George B Thomas, Jr and Ross L Finney: CALCULUS, LPE, Ninth edition, Pearson
	Education.

COURSE CONTENT		
Module 1. Integration	16 Hours	
Integration	<u> </u>	
Properties of definite integrals, areas and the Mean value	theorem. The	
Fundamental theorem (Omit Proof) (Section 4.6, 4.7).		
Application of Integrals		
Application of Integrals: Areas between curves, Finding	Volumes by	
slicing, Volumes of Solids of Revolution (Disk method only	y), Lengths of	
plane curves. Areas of surfaces		
of revolution. (Section 5.1, 5.2, 5.3, 5.5, 5.6)		
Module 2. Hyperbolic Functions and Polar coordinates	14 Hours	
Hyperbolic Functions- Definitions and Identities, Der	ivatives and	
Integrals, Inverse Hyperbolic Functions, Derivatives and Int	egrals.	
Polar coordinates, Graphing in Polar Coordinates, Polar eq conic sections, Integration in Polar coordinates. (Section 6 9.8, 9.9)		
Module 3. Sequences	11 Hours	
Limit of Sequences of Numbers, Theorems for calculating limits of seq	uences	
(Excluding Picard's Method) (Sections 8.1, 8.2)		
Module 4. Infinite Series	11 Hours	
Infinite series, The ratio and root test for series of nonnegative terms, Power Series, Taylor and Maclaurin Series. (Sections 8.3, 8.6, 8.8, 8.9)		

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

	MODE OF ASSESSMENT			
Internal Assessment (15 Marks)				
a.	Classroom participation:	3 Mark		
b.	Test papers I:	6 Mark		
c.	Assignment:	3 Mark		
d.	Seminar:	3 Mark		

External Assessment (60 Marks) Duration 2 Hours, No of Questions: 21

PATTERN OF QUESTION PAPER

Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	12	12	2	20
Paragraph	7	7	5	30
Essay	2	1	10	10
	1	1	Total	60

MODULE WISE MARK DISTRIBUTION			
Module	Mark		
Module 1: Integration	21		
Module 2: Hyperbolic Functions and Polar coordinates	12		
Module 3: Sequences	9		
Module 4: Infinite Series	10		

*List of Practicals (using any software)

- Finding area under a curve and verifying definite integral of a positive function and area under its graph are same.
- Obtaining surface of revolution of curves.
- Plotting of graphs of hyperbolic functions.
- Plotting of recursive sequences.
- Study the convergence of sequences through plotting.
- Calculate the sum 1 + 1/2 + 1/3 + 1/4 + ... + 1/n.
- Study the convergence/divergence of infinite series by plotting their sequences of partial sum.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

- 1. Soo T Tan: Calculus Brooks/Cole, Cengage Learning(2010)ISBN 0-534-46579-X
- 2. Gilbert Strang: Calculus Wellesley Cambridge Press(1991)ISBN:0-9614088-2-0
- 3. Ron Larson. Bruce Edwards: Calculus(11/e) Cengage Learning(2018) ISBN: 978-1-337-27534-7
- 4. Robert A Adams & Christopher Essex : Calculus Single Variable (8/e) Pearson Education Canada (2013) ISBN: 0321877403

- Joel Hass, Christopher Heil & Maurice D. Weir : Thomas' Calculus(14/e) Pearson (2018) ISBN 0134438981
- 6. Peter V O'Neil: Advanced Engineering Mathematics(7/e) *Cengage Learning(2012)ISBN*: 978-1-111-42741-2
- Erwin Kreyszig : Advanced Engineering Mathematics(10/e) John Wiley & Sons(2011) ISBN: 978-0-470-45836-5

Glyn James: Advanced Modern Engineering Mathematics(4/e) *Pearson Education Limited* (2011) ISBN: 978-0-273-71923-6

COURSE CODE – BMT3C03(CS) COMPLEMENTARY COURSE VII: Mathematics 3				
Credit	Hourolwook	Marks		
Credit	Hours/week	Internal	External	Total
3	5	15	60	75

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	Solve a system of linear equations using matrix theory.	Apply	PSO6
CO2	<i>Compute</i> Find limits, continuity and differentiability of functions of several variables.	Apply	PSO6
CO3	Explain Work on the idea of limit, continuity, and derivative of vector-valued functions.	Understand	PSO1
CO4	Understand the concept of gradient and directional derivative and their geometrical interpretation	Understand	PSO1
CO5	<i>Make use of</i> Find the rank and inverse of a matrix using elementary row transformations.	Apply	PSO6
CO6	Utilize Find the characteristic roots values and the corresponding characteristic vectors of a matrix	Analyse	PSO4
C07	Analyse Work on the idea of limit, continuity, and derivative of vector-valued functions.	Analyse	PSO4
CO8	Determine Find limits, continuity and differentiability of functions of several variables.	Evaluate	PSO4

СОЭ	Judge Verify Cayley Hamilton Theorem and understand its applications.	Evaluate	PSO4
CO10 Use partial derivatives to find the tangent plane A and normal line to a point on a surface.		Apply	PSO6
COII	Determine continuity, differentiability, analyticity of a complex function.	Evaluate	PSO4
CO12	Develop Perform basic mathematical operations with complex numbers in cartesian and polar forms.	Create	PSO5

TEXT 1	George B Thomas, Jr and Ross L Finney: CALCULUS, LPE, Ninth edition, Pearson Education.	
TEXT 2	2 Frank Ayres JR: Matrices, Schaum's Outline Series, TMH Edition	
TEXT 3 Erwin Kreyszig: Advanced Engineering Mathematics, Eighth Edition, Wi India. India.		

COURSE CONTENT	COURSE CONTENT					
Module 1. Matrices TEXT 2 16 Hours						
Rank of a Matrix, Non-Singular and Singula	Rank of a Matrix, Non-Singular and Singular matrices, Elementary					
Transformations, Inverse of an elementary	Transformation	s, Row Canonical				
form, Normal form. Systems of Linear equa	tions: Homogen	eous and Non-				
Homogeneous Equations, Characteristic e	Homogeneous Equations, Characteristic equation of a matrix; Characteristic					
roots and characteristic vectors. Cayley Ho	roots and characteristic vectors. Cayley Hamilton Theorem (statement only)					
and simple applications (relevant sections	s of Text 2).					
Module 2. Functions of Several Variables TEXT 1 13 Hours						
Functions of Several Variables, Limits and Continuity, Partial Derivatives,						
differentiability, Chain rule (Sections 12.1, 12.2, 12.3, 12.4, 12.5 of the Text 1)						

Module 3. Vector Differential Calculus	TEXT 3	22 Hours			
A quick Review of vector algebra, Inner pro $\mathbb{R}^3.$	A quick Review of vector algebra, Inner product and vector product in \mathbb{R}^2 and \mathbb{R}^3 .				
Vector and scalar functions and Fields,	Derivatives, Cu	irves, Tangents, Arc			
Length, Gradient of a scalar field; Direction	al Derivative, Div	vergence of a vector			
field, Curl of a Vector Field. (Sections 8.1, 8.2	field, Curl of a Vector Field. (Sections 8.1, 8.2, 8.3, 8.4, 8.5, 8.9, 8.10, 8.11 of Text 3)				
(Sections 9.1, 9.2, 9.4, 9.5, 9.6, 9.7, 9.9, 9.10 of	(Sections 9.1, 9.2, 9.4, 9.5, 9.6, 9.7, 9.9, 9.10 of Text (2))				
Module 4. Complex Analysis	Module 4. Complex Analysis TEXT 3 14 Hours				
A Quick Review: Complex Numbers, Complex Plane,	Polar Form of	Complex Numbers,			
Powers and Roots. Derivatives, Analytic functions, Cauchy-Riemann Equations, Laplace's					
Equation (All proofs omitted)					
(Section 12.1, 12.2, 12.3, 12.4, 13.1, 13.2, 13.3, 13.4 (statements only) of the Text 3).					

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MODE OF ASSESSMENT

Internal Assessment (15 Marks)

e. Classroom participation:

3 Mark

f.	Test papers I:	6 Mark
g.	Assignment:	3 Mark
h.	Seminar:	3 Mark

External Assessment (60 Marks)		Duration: 2 Hours, No of Questions:21			
PATTERN OF QUESTION PAPER					
Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks	
Short answer	12	12	2	20	
Paragraph	7	7	5	30	
Essay	2	1	10	10	
	1		Total	60	

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module 1: Matrices	15	
Module 2: Functions of Several Variables	12	
Module 3: Vector Differential Calculus	20	
Module 4: Complex Analysis	13	

*List of Practicals	(using any software)	

- Matrix operation (addition, multiplication, inverse, transpose).
- Reorganizing systems of linear equations into matrix form and solving.
- Calculating the eigen values and eigen vectors of a matrix.
- Evaluating limits by plotting of graphs of multi-variable functions.

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

- 1. Soo T Tan: Calculus Brooks/Cole, Cengage Learning(2010) ISBN 0-534-46579-X
- 2. Gilbert Strang: Calculus Wellesley Cambridge Press(1991)ISBN:0-9614088-2-0
- 3. Ron Larson. Bruce Edwards: Calculus(11/e) Cengage Learning(2018) ISBN: 978-1-337-27534-7
- 4. Robert A Adams & Christopher Essex : Calculus several Variable (7/e) Pearson Education Canada (2010) ISBN: 978-0-321-54929-7
- 5. Jerrold Marsden & Anthony Tromba : Vector Calculus (6/e) W. H. Freeman and Company ISBN 978-1-4292-1508-4
- 6. Peter V O'Neil: Advanced Engineering Mathematics(7/e) Cengage Learning(2012)ISBN: 978-1-111-42741-2
- Erwin Kreyszig : Advanced Engineering Mathematics(10/e) John Wiley & Sons(2011) ISBN: 978-0-470-45836-5
- Dennis G Zill: Advanced Engineering Mathematics(6/e) Jones & Bartlett Learning, LLC (2018) ISBN: 978-1-284-10590-2

COURSE CODE -BMT4C04(CS)				
	COMPLEMENTARY COURSE VIII : Mathematics 4			
Credit	Heurebucek		Marks	
Credit	Hours/week	Internal	External	Total
3	5	15	60	75

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domain	PSO No
COI	Learn the major classifications of differential equations.	Understand	PSO1
CO2	Learn the conditions for the existence of solution of first and second order initial value problems.	Understand	PSO1
CO3	Learn to solve the first order differential equations that are of linear, separable, exact, and Bernoulli's forms	Understand	PSO1
CO4	Find the orthogonal trajectories of family of curves.	Analyse	PSO4
CO5	Familiar with the theory and method of solving second order linear homogeneous and non- homogeneous equations with constant coefficients.	Analyse	PSO4
CO6	Learn the method of reduction of order to find a second solution of linear second order equation by reducing to linear first order equation.	Apply	PSO2

C07	Learn the method of solution of Euler Cauchy equations.	Understand	PSO1
CO8	Determine the Laplace Transform and inverse Laplace Transform of a function.	Apply	PSO2
CO9	Learn the linearity and shifting theorems	Understand	PSO1
CO10	Acquire the knowledge of solving a differential equation using the Laplace method.	Evaluate	PSO4
COII	Understand periodic functions and their Fourier series expansion	Understand	PSO1
CO12	Approximate the integral using the Trapezoidal rule and Simpson's rule.	Apply	PSO2
CO13	Learn the basic concepts of partial differential equations	Understand	PSO1

TEXT	Erwin Kreyszig: Advanced Engineering Mathematics, Eighth Edition, Wiley, India

COURSE CONTENT				
Module 1. Ordinary Differential Equations 20 Hours				
Basic concepts and ideas, Geometrical meaning of y' = f (x, y), Direction Fields,			
Separable Differential Equations. Exact Differential Equ	uations; Integrating			
Factors, Linear Differential Equations; Bernoulli Equation, Orthogonc				
Trajectories of Curves.				
(Sections 1.1, 1.2, 1.3, 1.5, 1.6, 1.8)				
Module 2. Linear Differential equations of Second and Higher order	20 Hours			
Linear Differential equations of Second and Higher order: Differential Operators,				
Euler-Cauchy Equation, Wronskian, Nonhomogeneous Equations, Solutions by				
Undetermined Coefficients, Solution by variation of Parameters.				

(Sections 2.1, 2.2, 2.3, 2.4, 2.6, 2.7, 2.8, 2.9, 2.10).			
Module 3. Laplace Transforms and Fourier Series	24 Hours		
Laplace Transforms: Laplace Transform, Inverse Transfor	n, Linearity, Shifting,		
Transforms of Derivatives of Integrals, Differential Equation	s. Unit step Function,		
Second Shifting Theorem.			
(Sections 5.1, 5.2, 5.3 – Excluding Proofs).			
Fourier Series: Periodic Functions, Trigonometric Series, Fourier Series, Even an			
Odd functions, Half-range Expansions.			
(Sections 10.1, 10.2, 10.4 – Excluding Proofs)			
Module 4. Numerical Integration and Partial Differential Equations	8 Hours		
Numerical Integration: Trapezoidal Rule, Simpson's Rule. (Section 4.9).			
Partial differential Equations: Basic Concepts. (Section 11.1).			

MODE OF TRANSACTION

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

Peer to Peer learning: Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

Group Discussion: Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

MODE OF ASSESSMENT

Internal Assessment (15 Marks)

a.	Class Room Participation:	3 Mark
b.	Assignment:	3 Mark
C.	Seminar:	3 Mark
d.	Test Paper 1:	6 Mark

External Assessment (60 Marks): Duration: 2 Hours, No. of Questions: 21

PATTERN OF QUESTION PAPER

Pattern	Total No. of questions	No. of questions to be answered	Marks for each question	Ceiling of Marks
Short answer	12	12	2	20
Paragraph	7	7	5	30
Essay	2	1	10	10
	I		Total	60

MODULE WISE MARK DISTRIBUTION		
Module	Mark	
Module 1: Ordinary Differential Equations	17	
Module 2: Linear Differential equations of Second and Higher order	17	
Module 3: Laplace Transforms and Fourier Series	20	
Module 4: Numerical Integration and Partial Differential Equations	6	

*List of Practicals (using any software)

• Plotting of first and second order solutions of ordinary differential equations.

• Finding the Laplace transforms of some functions.

• Approximating definite integral by using Simpson's rule and Trapezoidal rule

* Practical shall be conducted during extra hours. Questions should not be asked from this part.

REFERENCES:

- Peter V O'Neil: Advanced Engineering Mathematics(7/e) Cengage Learning (2012) ISBN: 978-1-111-42741-2
- Erwin Kreyszig: Advanced Engineering Mathematics(10/e) John Wiley & Sons (2011) ISBN: 978-0-470-45836-5
- Alan Jeffrey: Advanced Engineering Mathematics Harcourt/Academic Press (2002) ISBN: 0-12-382592-X
- 4. Glyn James: Advanced Modern Engineering Mathematics(4/e) Pearson Education Limited (2011) ISBN: 978-0-273-71923-6
- Dennis G Zill: Advanced Engineering Mathematics(6/e) Jones & Bartlett Learning, LLC (2018) ISBN: 978-1-284-10590g