# FAROOK COLLEGE (AUTONOMOUS)

Farook College PO, Kozhikode-673 632

# **MSc PROGRAMME IN CHEMISTRY**

Under Choice Based Credit Semester System

# **SYLLABUS**

Core & Elective Courses

(2022 Admission Onwards)



# **BOARD OF STUDIES IN CHEMISTRY**

# CERTIFICATE

I hereby certify that the documents attached are the bonafide copies of the syllabus of Core Courses offered to B.Sc. Chemistry programme and Complementary & Open Courses offered by the Department of Chemistry to be effective from 2022 admission onwards.

Principal

Date:

Place: Farook College

# CONTENTS

| SL. NO. | PARTICULARS                            | PAGE |
|---------|----------------------------------------|------|
| 1       | Preamble                               | i    |
| 2       | Members of the Board of Studies        | iii  |
| 3       | Audit Courses                          | V    |
| 4       | Programme Outcome                      | ix   |
| 5       | Programme Specific Outcomes            | X    |
| 6       | Scheme of the Programme                | xi   |
| 7       | Credit and Weightage Distribution      | xiii |
| 8       | Course Structure                       | xiv  |
| 9       | MSc Chemistry Syllabus (CBCSS Pattern) | 1    |

# POSTGRADUATE PROGRAMME IN CHEMISTRY PREAMBLE

The Master of Science (MSc) in Chemistry is a two-year full-time programme. Science education is central to the development of any society. This can be achieved only by revamping the postgraduate programme to make it effective and meaningful. The development of scientific temper in society necessitates proper education and guidance. In order to achieve this, one must update the developments in the field of science. An effective science education can be imparted at the postgraduate level only by revamping the present curriculum.

To achieve this goal, the curriculum should be restructured by emphasizing various aspects such as the creativity of students, knowledge of current developments in the discipline, awareness of environmental impacts due to the development of science and technology, and the skills essential for handling equipments and instruments in laboratories and industries.

Chemistry, being an experimental science, demands testing theories through practical laboratory experiences for a thorough understanding of the subject. Nowadays, chemistry laboratories in academic institutions use large amounts of chemicals. The awareness and implementation of eco-friendly experiments becomes a global necessity. It is essential to ensure that laboratory chemicals are used at a minimal level without affecting the skill and understanding aimed through laboratory sessions. This creates an environmental awareness among the students and pollution free atmosphere in the campus.

During the preparation of the syllabus, the existing syllabus, the syllabi of undergraduate course and the syllabi of other universities have been referred. Care has been taken to ensure that the syllabus is compatible with the syllabi of other universities at the same level. Sufficient emphasis is given in the syllabus for training in laboratory skills and instrumentation.

The goal of the syllabus is to make the study of chemistry stimulating, relevant and interesting. This curriculum has been prepared with the objective of giving sound knowledge and understanding of chemistry to students with a view to equip them with the potential to contribute to academic, research and industrial environments. This curriculum will expose students to various fields in chemistry and develop interest in related disciplines. The updated syllabus is based on an interdisciplinary approach to understand the application of the subject in daily life.

The curriculum is designed as per the Regulations of University of Calicut. The revised syllabus is an outcome of several meetings of the board of studies and consultation with various experts in specific subjects from other colleges and universities. Their valuable comments and suggestions have been incorporated in the syllabus. I express my gratitude to members of the board of studies and other experts.

#### Dr. A. P. Kavitha

Chairperson, Board of Studies in Chemistry (PG)

Farook College (Autonomous)

### **MEMBERS OF BOARD OF STUDIES**

#### Chairperson

### 1. Dr. A. P. Kavitha

Assistant Professor & Head Department of Chemistry, Farook College (Autonomous) 8086827711, kavitha@farookcollege.ac.in

### Members

### 1. Mohammed Ziyad P.A.

Assistant Professor

Department of Chemistry, Farook College (Autonomous) 9747616705, ziyad@farookcollege.ac.in

### 2. Dr. Rafeeque P

Assistant Professor Department of Chemistry, Farook College (Autonomous) 9048256024, rafeeque@farookcollege.ac.in

### 3. Dr. Reji Thomas

Assistant Professor

Department of Chemistry, Farook College (Autonomous) 8943430700, reji@farookcollege.ac.in

### 4. Shanavas Yoosuf

Assistant Professor

Department of Chemistry, Farook College (Autonomous) 9400392553, shanavas@farookcollege.ac.in

# 5. Dr. Shalina Begum

Assistant Professor

Department of Chemistry, Farook College (Autonomous) 9447218797, shalina@farookcollege.ac.in

### 6. Dr. A. Sujith

Associate. Professor Department of Chemistry, NIT Calicut 9846475675, sujith@nitc.ac.in

#### 7. Dr. Basheer M C

Assistant Professor

Department of Chemistry, P.S.M.O. College, Tirurangadi 9048370960, basheermc@gmail.com

### 8. Dr. N. K. Renuka

Associate Professor

Department of Chemistry, University of Calicut

9447647790, nkrenu@gmail.com

### 9. Dr. Santhosh Nandan

Director

Ambernath Organics Pvt. Ltd., Mumbai

9820349596, santhoshnandan@gmail.com

### 10. Mr. Shahabaz Ali.

General Manager Parisons Foods, Pvt. Ltd., Calicut

9747000123, shahabazali@parisons.com

### 11. Dr. Muhammed Basheer Ummathur

Associate Professor& HoD

Department of Chemistry, KAHM Unity Women's College, Manjeri

9446885154, mbummathur@gmail.com

#### **Special Invitee**

### 12. Dr. V. M. Abdul Mujeeb.

Professor (Rtd.)

Department of Chemistry, University of Calicut

9847528856, vmamujeeb@reddifmail.com

### 13. Dr. A. K. Abdul Rahim.

Director

Al-Farook Education Centre 9447517230, abdulrahimak111@gmail.com

#### 14. Dr. K. Mohammed Basheer

Former HoD

Department of Chemistry, Farook College (Autonomous)

9446953620, basheerkoottil@gmail.com

#### **AUDIT COURSES**

#### **<u>1. Ability Enhancement Course (AEC):</u>**

This course aims to have hands on experience for the students in their respective field of study, both in the core and elective subject area. Also, it is a platform for the student community to have basic concepts of research and publication.

AEC is a **4-credit course** and should be conducted during the **first semester** of the programme. Credit of the AE course will not be considered while calculating the SGPA/CGPA. But the student has to obtain minimum pass requirements in this course, which is compulsory for overall pass in the programme

One particular AEC may be selected for all the students in a batch in the department or each student in a batch may choose one AEC, among the pool of courses suggested below. Either a single faculty from the department may be in charge of this course for a batch or each student may be assigned to a particular faculty in the department, in charge of this AEC, which will be decided by the department council/ HoD.

- 1. Industrial/Research institution visit/visits.
- 2. Publication of a research article/articles in national/international journal
- 3. Presentation of research paper/papers in national level seminar/conference, which should be published in the seminar/conference proceedings.
- 4. Review article/articles on research topics which is presented in a national level seminar/conference and published in the proceedings.
- 5. Internships at any reputed research institutions/R&D centre/Industry

After conducting the AEC, the evaluation/examination should be done either common for all students in a batch or individually depending upon the AEC conducted. Evaluation/examination must be conducted by **30 weightage** pattern, as in the theory courses. The evaluation/ examination must be conducted jointly by the teacher in charge of the AEC and the head of the department. The result of the AEC, duly signed and sealed by both teacher in charge and head of the department, should be uploaded during the stipulated time period in the third semester of the programme.

Evaluation/examination on AEC must contain the following components:

- a. MCQ type written examination
- b. Report on AEC

- c. Presentation of AEC
- d. Viva voce on AEC.

*Distribution of 30 weightage may be done by the teacher in charge* in concurrence with the Head of the department.

### 2. Professional Competency Course (PCC):

This course particularly aims to improve the skill level of students, especially for using specific as well as nonspecific software useful in their respective field of study, both related to the core and elective subject area. Also, it is a platform for the student community to undertake socially committed projects and thereby developing a method of leaning process by through the involvement with society.

PCC is a **4-credit course** and should be conducted during the **second semester** of the programme. The credit of the PC course will not be considered while calculating the SGPA/CGPA. But the student has to obtain minimum pass requirements in this course, which is compulsory for an overall pass in the programme.

One particular PCC may be selected for all the students in a batch in the department or each student in a batch may choose one PCC, among the pool of courses suggested below. The exact title of the course may be decided by the department, but the area of study should be from the pool of courses suggested below. Either a single faculty from the department may be in charge of this course for a batch or each student may be assigned to a particular faculty in the department, in charge of this PCC, which will be decided by the department council/ HoD.

- 1. Development of skills on using softwares like Gaussian, GAMESS etc which is useful in molecular modeling, drug designing, etc.
- 2. Development of skills on using software like ChemDraw, ChemWindow, ISIS draw, etc which is useful in drawing purposes, structural predictions, etc.
- 3. Training on computational chemistry
- 4. Case study and analysis on any relevant issues in the nearby society (e. g. example water analysis, soil analysis, acid/alkali content analysis, sugar content analysis, etc)
- 5. Any community linking programme relevant to the area of study (e. g. training for society on soap/perfume making, waste disposal, plastic recycling, etc)

After conducting the PCC, the evaluation/examination should be done either common for all students in a batch or individually depending upon the PCC conducted. Evaluation/examination must be conducted by **30 weightage** pattern, as in the theory courses. The evaluation/ examination must be conducted jointly by the teacher in charge of the PCC and the head of the department. The result of the PCC, duly signed and sealed by both teacher in charge and head of the department, should be uploaded during the stipulated time period in the third semester of the programme.

Evaluation/examination on PCC must contain the following components:

- a. MCQ type written examination
- b. Report on PCC
- c. Presentation on PCC
- d. Viva voce on PCC.

*Distribution of 30 weightage may be done by the teacher in charge* in concurrence with the Head of the department.

### **PROGRAMME OUTCOME**

Upon completion of the postgraduate program at Farook College (Autonomous), the students will be able to develop:

#### PO1. Advanced Disciplinary Knowledge

Graduates will demonstrate a deep understanding of advanced concepts and theories in their field of study and will be able to apply this knowledge to complex problems.

#### PO2. Application of knowledge

The graduate will be able to review the information, develop lines of argument and make sound judgment in accordance with the major disciplinary theories and concepts

### **PO3. Research and Inquiry**

Graduates will be able to conduct independent research, using appropriate methods and tools, and will be able to analyse and interpret data to develop evidence-based conclusions

#### **PO4.** Professional Practice

Graduates will demonstrate the ability to apply their knowledge and skills to realworld problems and to practice their profession in an ethical and responsible manner.

### PO5. Scientific Communication Skills

Students will be able to develop strong scientific communication skills, including the ability to effectively communicate scientific research to both scientific and nonscientific audiences.

#### **PO6.** Leadership and Management

Graduates will be able to assume leadership roles, guiding and motivating others to achieve shared goals, and will demonstrate the ability to manage complex projects and teams.

#### **PO7.** Lifelong Learning

Graduates will demonstrate a commitment to lifelong learning and professional development, staying current with advances in their field and continuously improving their skills and knowledge.

### **PROGRAMME SPECIFIC OUTCOMES (PSO)**

Upon completion of MSc Chemistry programme, the students will be able to:

- PSO 1. Remember the theoretical and experimental background of different branches of chemistry to understand new concepts.
- PSO 2. Understand the ideas and principle of Inorganic, Organic, Theoretical, and Physical chemistry and interrelate them.
- PSO 3. Analyse and relate the concept acquired with other interdisciplinary areas like biochemistry, computational chemistry, material science, and medicinal chemistry.
- PSO 4. Apply the concepts experimentally by using different equipments to develop practical skills.
- PSO 5. Evaluate the data obtained from computational and experimental measurements.
- PSO 6. Understand the concept through instrumentation and analyse the data obtained for solving the problems.
- PSO 7. Create project report for the research work by using modern analytical methods and instruments.
- PSO 8. Apply the in-depth knowledge of the concepts acquired to qualify competitive examinations.
- PSO 9. Create and invent innovative methods to solve environmental issues.
- PSO 10. Create and design a green protocol for the wellbeing of society by coordinating the ideas obtained from different branches of chemistry.
- PSO 11. Apply the ideas and skills acquired for higher studies in research institutions and to work in chemical industries.

| Comoston | Correct                                       | а <b>Т</b> Ча         | Cuedite | Weightage |          |  |
|----------|-----------------------------------------------|-----------------------|---------|-----------|----------|--|
| Semester | Cours                                         | e Title               | Credits | Internal  | External |  |
|          | Quantum Mechanics                             | and Group Theory      | 4       | 30        | 5        |  |
|          | Chemistry of Elemen                           | nts                   | 4       | 30        | 5        |  |
|          | Structure and Reactin<br>Compounds            | vity of Organic       | 4       | 30        | 5        |  |
| I        | Thermodynamics, K                             | inetics and Catalysis | 4       | 30        | 5        |  |
|          | Ability Enhancement                           | t Course              | 4       | 30        | -        |  |
|          |                                               | Core Course           | 16      |           |          |  |
|          | Total credits:                                | Audit Course          | 4       |           |          |  |
|          |                                               | Total                 | 20      |           |          |  |
|          | Quantum Mechanics<br>Chemistry                | and Computational     | 3       | 30        | 5        |  |
|          | Coordination Chemi                            | 3                     | 30      | 5         |          |  |
|          | Organic Reaction Me                           | 3                     | 30      | 5         |          |  |
|          | Electrochemistry, So<br>and Statistical Therm | 3                     | 30      | 5         |          |  |
|          | Inorganic Chemistry                           | 3                     | 30      | 10        |          |  |
| II       | Organic Chemistry F                           | 3                     | 30      | 10        |          |  |
|          | Physical Chemistry I                          | 3                     | 30      | 10        |          |  |
|          | Professional Competence                       | 4                     | 30      | -         |          |  |
|          |                                               | Core Course           | 21      |           |          |  |
|          | Total credits:                                | Audit Course          | 4       |           |          |  |
|          |                                               | Total                 | 25      |           |          |  |
|          | Molecular Spectrosc                           | ору                   | 4       | 30        | 5        |  |
|          | Organometallic & B<br>Chemistry               | ioinorganic           | 4       | 30        | 5        |  |
|          | Reagents and Transf<br>Organic Chemistry      | ormations in          | 4       | 30        | 5        |  |
| III      | Elective Course-1                             |                       | 4       | 30        | 5        |  |
|          |                                               | Core Course           | 12      |           |          |  |
|          | Total credits:                                | Elective Course       | 4       |           |          |  |
|          |                                               | Total                 | 16      |           |          |  |

# **SCHEME OF THE PROGRAMME** Credit and Weightage Distribution in Each Semester

|                                | Instrumental Method | ls of Analysis   | 4  | 30   | 5  |  |
|--------------------------------|---------------------|------------------|----|------|----|--|
|                                | Inorganic Chemistry | Practical IV     | 3  | 30   | 10 |  |
|                                | Organic Chemistry I | Practical IV     | 3  | 30   | 10 |  |
|                                | Physical Chemistry  | Practical IV     | 3  | 30   | 10 |  |
|                                | Elective Course-2   |                  | 4  | 30   | 5  |  |
|                                | Elective Course-3   |                  | 4  | 30   | 5  |  |
| IV                             | Research Project    | Research Project |    |      | 5  |  |
|                                | Viva Voce           |                  | 2  | 30 5 |    |  |
|                                |                     | Core Course      | 13 |      |    |  |
|                                |                     | Elective Course  | 8  |      |    |  |
|                                | Total credits       | Project          | 4  |      |    |  |
|                                |                     | Viva Voce        | 2  |      |    |  |
|                                |                     | Total            | 27 |      |    |  |
|                                |                     | Core Course      | 62 |      |    |  |
| Total credits of the Programme |                     | Elective Course  | 12 |      |    |  |
|                                |                     | Project          | 4  |      |    |  |
|                                |                     | Viva Voce        | 2  |      |    |  |
|                                |                     | Audit Course     | 8  |      |    |  |
|                                |                     | Total Credits    | 88 |      |    |  |

.

.

.

| Semester | Core Course                           | Elective<br>Course | Project | Viva | Audit<br>Course | Total |
|----------|---------------------------------------|--------------------|---------|------|-----------------|-------|
| 1        | 4+4+4+4                               |                    |         |      | 4               | 20    |
| 2        | $3 + 3 + 3 + 3 + 3 + 3^* + 3^* + 3^*$ |                    |         |      | 4               | 25    |
| 3        | 4 + 4 + 4                             | 4                  |         |      |                 | 16    |
| 4        | $4 + 3^* + 3^* + 3^*$                 | 4 + 4              | 4       | 2    |                 | 27    |
| Total    | 62                                    | 12                 | 4       | 2    | 8               | 88    |

# **CREDIT DISTRIBUTION**

\*Practical

| Semester | Course         | Course Title                                                                 |      | Credits | Weightage |          |  |
|----------|----------------|------------------------------------------------------------------------------|------|---------|-----------|----------|--|
| Semester | Code           | Course Thie                                                                  | Week | Creuits | Internal  | External |  |
|          |                | SEMESTER I                                                                   |      |         |           |          |  |
|          | MCH1C01        | Quantum Mechanics and Group<br>Theory                                        | 4    | 4       | 30        | 5        |  |
|          | MCH1C02        | Chemistry of Elements                                                        | 3    | 4       | 30        | 5        |  |
|          | MCH1C03        | Structure and Reactivity of Organic<br>Compounds                             | 3    | 4       | 30        | 5        |  |
|          | MCH1C04        | Thermodynamics, Kinetics and Catalysis                                       | 3    | 4       | 30        | 5        |  |
|          | MCH1L01        | Inorganic Chemistry Practical I*                                             | 4    | -       |           |          |  |
| Ι        | MCH1L02        | Organic Chemistry Practical I*                                               | 4    | -       |           |          |  |
|          | MCH1L03        | Physical Chemistry Practical I*                                              | 4    | -       |           |          |  |
|          | AUD1           | Ability Enhancement Course                                                   |      | 4       | 30        |          |  |
|          |                | Core Course                                                                  |      | 16      |           |          |  |
|          | Total credits: | Audit Course                                                                 |      | 4       |           |          |  |
|          |                | Total                                                                        |      | 20      |           |          |  |
|          |                | SEMESTER II                                                                  |      |         |           |          |  |
|          | MCH2C05        | Quantum Mechanics and<br>Computational Chemistry                             | 3    | 3       | 30        | 5        |  |
|          | MCH2C06        | Coordination Chemistry                                                       | 3    | 3       | 30        | 5        |  |
|          | MCH2C07        | Organic Reaction Mechanisms                                                  | 3    | 3       | 30        | 5        |  |
|          | MCH2C08        | Electrochemistry, Solid State<br>Chemistry and Statistical<br>Thermodynamics | 3    | 3       | 30        | 5        |  |
|          | MCH2L04        | Inorganic Chemistry Practical II                                             | 4    | 3       | 30        | 10       |  |
| II       | MCH2L05        | Organic Chemistry Practical II                                               | 4    | 3       | 30        | 10       |  |
|          | MCH2L06        | Physical Chemistry Practical II                                              | 4    | 3       | 30        | 10       |  |
|          | AUD2           | Professional Competency Course                                               |      | 4       | 30        |          |  |
|          |                | Core Course                                                                  |      | 21      |           |          |  |
|          | Total credits: | Audit Course                                                                 |      | 4       |           |          |  |
|          |                | Total                                                                        |      | 25      |           |          |  |
|          |                | SEMESTER III                                                                 |      |         |           |          |  |
|          | MCH3C09        | Molecular Spectroscopy                                                       | 4    | 4       | 30        | 5        |  |
|          | MCH3C10        | Organometallic &Bioinorganic<br>Chemistry                                    | 3    | 4       | 30        | 5        |  |
| III      | MCH3C11        | Reagents and Transformations in<br>Organic Chemistry                         | 3    | 4       | 30        | 5        |  |
|          | MCH3L07        | Inorganic Chemistry Practical III <sup>#</sup>                               | 4    |         |           |          |  |
|          | MCH3L08        | Organic Chemistry Practical III <sup>#</sup>                                 | 4    |         |           |          |  |

# **COURSE STRUCTURE**

Courses offered for M.Sc. Chemistry Programme under CBCSS Patten

|                                | MCH3L09       | Physical Chemistry Practical III <sup>#</sup>                              | 4                         |    |    |    |
|--------------------------------|---------------|----------------------------------------------------------------------------|---------------------------|----|----|----|
|                                | MCH3E01       | Synthetic Organic Chemistry (Elective) <sup>§</sup>                        | 3                         | 4  | 30 | 5  |
|                                | MCH3E02       | Computational Chemistry (Elective) <sup>§</sup>                            | 3                         | 4  | 30 | 5  |
|                                | MCH3E03       | Green and Nanochemistry (Elective) <sup>§</sup>                            | 3                         | 4  | 30 | 5  |
|                                |               |                                                                            | Core                      | 12 |    |    |
|                                | Total Credits | ::                                                                         | Elective <sup>§</sup>     | 4  |    |    |
|                                |               |                                                                            | Total                     | 16 |    |    |
|                                |               | SEMESTER IV                                                                | I                         |    |    |    |
|                                | MCH4C12       | Instrumental Methods of Analysis                                           | 4                         | 4  | 30 | 5  |
|                                | MCH4L10       | Inorganic Chemistry Practical IV                                           | 3                         | 3  | 30 | 10 |
|                                | MCH4L11       | Organic Chemistry Practical IV                                             | 3                         | 3  | 30 | 10 |
|                                | MCH4L12       | Physical Chemistry Practical IV                                            | 3                         | 3  | 30 | 10 |
|                                | MCH4E04       | Petrochemicals and Cosmetics<br>(Elective) <sup>†</sup>                    | 4                         | 4  | 30 | 5  |
|                                | MCH4E05       | Industrial Catalysis (Elective) <sup>†</sup>                               | 4                         | 4  | 30 | 5  |
|                                | MCH4E06       | Natural Products & Polymers<br>(Elective) <sup>†</sup>                     | 4                         | 4  | 30 | 5  |
|                                | MCH4E07       | Material Science (Elective) <sup>†</sup>                                   | 4                         | 4  | 30 | 5  |
| IV                             | MCH4E08       | Organometallic Chemistry<br>(Elective) <sup>†</sup>                        | 4                         | 4  | 30 | 5  |
|                                | MCH4E09       | $(Elective)^{\dagger}$ Advanced Topics in Chemistry $(Elective)^{\dagger}$ | 4                         | 4  | 30 | 5  |
|                                | MCH4P01       | Research Project                                                           | 3                         | 4  | 30 | 5  |
|                                | MCH4V01       | Viva Voce                                                                  |                           | 2  | 30 | 5  |
|                                |               |                                                                            | Core                      | 13 |    |    |
|                                |               |                                                                            | Elective <sup>†</sup>     | 8  |    |    |
|                                | Total Credits | :                                                                          | Project                   | 4  |    |    |
|                                |               |                                                                            | Viva<br>Voce              | 2  |    |    |
|                                |               |                                                                            | Total                     | 27 |    |    |
|                                |               |                                                                            | Core                      | 62 |    |    |
|                                |               |                                                                            | Elective                  | 12 |    |    |
|                                |               |                                                                            | Project                   | 4  |    |    |
| Total Credits of the Programme |               |                                                                            | Viva<br>Voce              | 2  |    |    |
|                                |               |                                                                            |                           | 8  |    |    |
|                                |               | d of 2 <sup>nd</sup> semester                                              | Audit<br>Total<br>Credits | 88 |    |    |

### **MSc CHEMISTRY SYLLABUS**

### **SEMESTER I**

# Theory

| MCH1C01 | QUANTUM MECHANICS AND GROUP THEORY            | 1  |
|---------|-----------------------------------------------|----|
| MCH1C02 | CHEMISTRY OF ELEMENTS                         | 9  |
| MCH1C03 | STRUCTURE AND REACTIVITY OF ORGANIC COMPOUNDS | 14 |
| MCH1C04 | THERMODYNAMICS, KINETICS AND CATALYSIS        | 22 |

# **SEMESTER II**

# Theory

| MCH2C05 | QUANTUM MECHANICS AND COMPUTATIONAL CHEMISTRY 28        |
|---------|---------------------------------------------------------|
| MCH2C06 | COORDINATION CHEMISTRY                                  |
| MCH2C07 | REACTION MECHANISM IN ORGANIC CHEMISTRY 40              |
| MCH2C08 | ELECTROCHEMISTRY, SOLID STATE CHEMISTRY AND STATISTICAL |
|         | THERMODYNAMICS                                          |

## Practical

| MCH1L01 & MCH2L04 | INORGANIC CHEMISTRY PRACTICALS- I & II | 53 |
|-------------------|----------------------------------------|----|
| MCH1L02 & MCH2L05 | ORGANIC CHEMISTRY PRACTICALS-I & II    | 56 |
| MCH1L03 & MCH2L06 | PHYSICAL CHEMISTRY – I & II            | 59 |

### **SEMESTER III**

# Theory

| MCH3C09  | OMOLECULAR SPECTROSCOPY                           | 63 |
|----------|---------------------------------------------------|----|
| MCH3C10  | ORGANOMETALLIC AND BIOINORGANIC CHEMISTRY         | 70 |
| MCH3C1   | REAGENTS AND TRANSFORMATIONS IN ORGANIC CHEMISTRY | 76 |
| Elective |                                                   |    |
| MCH3E01  | SYNTHETIC ORGANIC CHEMISTRY (ELECTIVE)            | 82 |
| MCH3E02  | 2 COMPUTATIONAL CHEMISTRY (ELECTIVE)              | 87 |
| MCH3E03  | GREEN CHEMISTRY AND NANOCHEMISTRY (ELECTIVE)      | 92 |

### SEMESTER IV

| Theory                                                        |
|---------------------------------------------------------------|
| MCH4C12 INSTRUMENTAL METHODS OF ANALYSIS                      |
| Practical                                                     |
| MCH3L07 & MCH4L10 INORGANIC CHEMISTRY PRACTICALS-III & IV 104 |
| MCH3L08 & MCH4L11 ORGANIC CHEMISTRY PRACTICALS-III & IV 107   |
| MCH3L09 & MCH4L12 PHYSICAL CHEMISTRY PRACTICALS-III & IV 111  |
| Elective                                                      |
| MCH4E04 PETROCHEMICALS AND COSMETICS (ELECTIVE) 116           |
| MCH4E05 INDUSTRIAL CATALYSIS (ELECTIVE) 122                   |
| MCH4E06 NATURAL PRODUCTS & POLYMER CHEMISTRY (ELECTIVE) 128   |
| MCH4E07 MATERIAL SCIENCE (ELECTIVE) 135                       |
| MCH4E08 ORGANOMETALLIC CHEMISTRY (ELECTIVE) 141               |
| MCH4E09 ADVANCED TOPICS IN CHEMISTRY (ELECTIVE) 147           |
| Project                                                       |
| MCH4P01 RESEARCH PROJECT 154                                  |
| Viva Voce                                                     |
| MCH4V01 VIVA VOCE156                                          |

# LIST OF ELECTIVES

| SEMESTER     | No. | COURSE CODE & TITLE                                | Page No. |
|--------------|-----|----------------------------------------------------|----------|
|              | 1   | MCH3E01<br>SYNTHETIC ORGANIC CHEMISTRY             | 82       |
| SEMESTER III | 2   | MCH3E02<br>COMPUTATIONAL CHEMISTRY                 | 87       |
|              | 3   | MCH3E03<br>GREEN CHEMISTRY AND<br>NANOCHEMISTRY    | 92       |
|              | 4   | MCH4E04<br>PETROCHEMICALS AND COSMETICS            | 116      |
|              | 5   | MCH4E05<br>INDUSTRIAL CATALYSIS                    | 122      |
| SEMESTER IV  | 6   | MCH4E06<br>NATURAL PRODUCTS & POLYMER<br>CHEMISTRY | 128      |
|              | 7   | MCH4E07<br>MATERIAL SCIENCE                        | 135      |
|              | 8   | MCH4E08<br>ORGANOMETALLIC CHEMISTRY                | 141      |
|              | 9   | MCH4E09<br>ADVANCED TOPICS IN CHEMISTRY            | 147      |

# MSc CHEMISTRY SYLLABUS

Core and Electives

# MSc CHEMISTRY SYLLABUS (CBCSS PATTERN) SEMESTER I

| COURSE CODE –MCH1C01<br>QUANTUM MECHANICS AND GROUP THEORY |            |           |          |       |  |
|------------------------------------------------------------|------------|-----------|----------|-------|--|
| Credit                                                     | Hours/week | Weightage |          |       |  |
| Credit                                                     | Hours/week | Internal  | External | Total |  |
| 4                                                          | 4          | 5         | 30       | 35    |  |

# Course Outcomes

| CO No. | <b>Expected Course Outcome</b><br>Upon completion of this course, students will be able to;                                      | Learning<br>Domain | PSO No |
|--------|----------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|
| CO1    | <i>Understand</i> the laws of quantum mechanics necessary for the description of atoms and molecules and their chemical reaction | Understan<br>d     | PSO 1  |
| CO2    | Distinguish classical and quantum mechanics                                                                                      | Evaluate           | PSO 2  |
| CO3    | <i>Translat</i> e a physical description of quantum mechanics problems                                                           | Create             | PSO 3  |
| CO4    | <i>Achieve</i> physical insight through the mathematics of a problem                                                             | Create             | PSO 3  |
| CO5    | <i>Apply</i> various mathematical equations to different quantum mechanical problems                                             | Apply              | PSO 4  |
| CO6    | Distinguish various symmetry elements                                                                                            | Analyse            | PSO 3  |
| CO7    | <i>Find out</i> point group of a molecule and their systematic identification                                                    | Analyse            | PSO 3  |
| CO8    | <b>Construct</b> group multiplication tables                                                                                     | Create             | PSO 3  |
| CO9    | <b>Judge</b> the suitability of group theoretical methods for spectroscopy.                                                      | Evaluate           | PSO 3  |
| CO10   | <b>Evaluate</b> the suitability of group theoretical methods for solving chemical bonding.                                       | Evaluate           | PSO 10 |

#### **COURSE CONTENT**

#### **Unit 1: Mathematics for Chemists**

- 1.1. Matrix Algebra: Addition and multiplication, inverse, adjoint and transpose of matrices, special metrics (symmetric, skew –symmetric, Hermitian, skew-Hermitian, unit diagonal, unitary etc) and their properties. block factored matrices, Matrix equations: Homogenous, non-homogenous linear equations and conditions for the solution, linear dependence and independence.
- 1.2. Differential calculus: Functions, continuity and differentiability, rules for differentiation, application of differential calculus including maxima and minima, Functions of various variables, partial differentiation.
- 1.3. Integral calculus: Basic rules for integration, integration by parts, partial fraction and substitution, Reduction formulae, applications of integral calculus.
- 1.4. Coordinate Systems: Cartesian, and spherical polar coordinates and their relationships
- 1.5. Complex Numbers: Algebraic operations, modulus and conjugate

### **Unit 2: Introduction to Quantum Mechanics**

### 8 Hours

- 2.1. Black body radiation and Planck's quantum postulate. Einstein's photoelectric equation, Schrodinger's wave mechanics,
- 2.2. Detailed discussion of postulates of quantum mechanics State function or wave function postulate, Born interpretation of the wave function, well behaved functions, orthonormality of wave functions
- 2.3. Operator postulate, operator algebra, linear and nonlinear operators, Noncommuting operators and the Heisenberg's Uncertainty principle, Laplacian operator, Hermitian operators and their properties, eigen functions and eigen values of an operator
- 2.4. Eigen value postulate, eigen value equation, Expectation value postulate;
- 2.5. Postulate of time- dependent Schrödinger equation of motion, conservative systems and time independent Schrödinger equation. Stationary states.

# Unit 3: Quantum Mechanics of Translational & Vibrational Motions

### 8 Hours

- 3.1. Free particle in one-dimension; Particle in a one-dimensional box with infinite potential walls, important features of the problem; Particle in a one-dimensional box with one finite potential wall, Particle in a rectangular well, (no derivation), Significance of the problem,
- 3.2. Introduction to tunnelling
- 3.3. Particle in a three-dimensional box, Separation of variables, degeneracy, Symmetry breaking.
- 3.4. One-dimensional harmonic oscillator (complete treatment):- Method of power series, Hermite equation and Hermite polynomials, recursion relation, wave functions and energies, important features of the problem
- 3.5. Harmonic oscillator model and molecular vibrations.

# **Unit 4: Quantum Mechanics of Rotational Motion**

**8** Hours

- 4.1. Planar rigid rotor (or particle on a ring), the Phi-equation, solution of the Phi-equation
- 4.2. One particle Rigid rotator (non-planar rigid rotator or particle on a sphere) (complete treatment): The wave equation in spherical polar coordinates, separation of variables, the Phi-equation and the Theta-equation and their solutions, Legendre and associated Legendre equations, Legendre and associated Legendre polynomials, Rodrigue's formula, spherical harmonics (imaginary and real forms), polar diagrams of spherical harmonics.
- 4.3. Quantization of angular momentum, quantum mechanical operators corresponding to angular momenta (Lx, Ly, Lz), commutation relations between these operators, Ladder operator method for angular momentum, space quantization.

### Unit 5: Quantum Mechanics of Hydrogen-like Atoms

**8 Hours** 

5.1. Potential energy of hydrogen-like systems, the wave equation in spherical polar coordinates, separation of variables, the R, Theta and Phi equations and their solutions, Laguerre and associated Laguerre polynomials, wave functions

and energies of hydrogen-like atoms, orbitals, radial functions and radial distribution functions and their plots, angular functions (spherical harmonics) and their plots.

- 5.2. The postulate of spin by Uhlenbeck and Goudsmith, Dirac's relativistic equation for hydrogen atom and discovery of spin (qualitative treatment),
- 5.3. Spin orbitals, construction of spin orbitals from orbitals and spin functions.

# Unit 6: Basic principles of group theory and Representation of Point groups

## **11 Hours**

- 6.1. Introduction the defining properties of mathematical groups, finite and infinite groups, Abelian and cyclic groups, group multiplication tables (GMT), similarity transformation, sub groups & classes in a group.
- 6.2. Molecular Symmetry & point groups symmetry elements and symmetry operations in molecules, relations between symmetry operations, complete set of symmetry operations of a molecule, point groups and their systematic identification, GMT of point groups
- 6.3. Representations of point groups basis for a representation, representations using vectors, atomic orbitals and Cartesian coordinates positioned on the atoms of molecule (H2O as example) as bases, reducible representations and irreducible representations (IR) of point groups, construction of IR by reduction (qualitative demonstration only)
- 6.4. Great Orthogonality Theorem (GOT) (no derivation) and its consequences, derivation of characters of IR using GOT, construction of character tables of point groups (C2V, C3V, C2h and C4V and C3 as examples), nomenclature of IR Mulliken symbols, symmetry species; Reduction formula derivation of reduction formula using GOT, reduction of reducible representations, (e.g., Gcart) using the reduction formula.
- 6.5. Relation between group theory and quantum mechanics wavefunctions (orbitals) as bases for IR of point groups.

Unit 7: Applications of Group Theory to Molecular Spectroscopy 8 I

8 Hours

- 7.1. Molecular vibrations symmetry species of normal modes of vibration, construction of Gcart, normal coordinates and drawings of normal modes (e.g., H<sub>2</sub>O and NH3), selection rules for IR and Raman activities based on symmetry arguments, determination of IR active and Raman active modes of molecules (e.g., H<sub>2</sub>O, NH<sub>3</sub>, CH<sub>4</sub>, SF<sub>6</sub>), complementary character of IR and Raman spectra.
- 7.2. Spectral transition probabilities direct product of irreducible representations and its use in identifying vanishing and non-vanishing integrals, transition moment integral and spectral transition probabilities.
- 7.3. Electronic Spectra electronic transitions and selection rules, Laporte selection rule for Centro symmetric molecules.

**Unit 8: Applications of Group Theory to Chemical Bonding** 

**8 Hours** 

- 8.1. Hybridisation Treatment of hybridization in BF3 and CH4,
- 8.2. Inverse transformation and construction of hybrid orbitals. Molecular orbital theory HCHO and H2O as examples,
- 8.3. Classification of atomic orbitals involved into symmetry species, group orbitals, symmetry adapted linear combinations (SALC), projection operator,
- 8.4. Construction of SALC using projection operator, use of projection operator in constructing SALCs for the pMOs in cyclopropenyl  $(C_3H_3^+)$  cation.

### **MODE OF TRANSACTION**

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

| MODE OF ASSESSMENT |                                                                                                       |               |                   |                   |              |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------|---------------|-------------------|-------------------|--------------|--|--|
| Internal As        | Internal Assessment (15 Weightage)                                                                    |               |                   |                   |              |  |  |
| a. Inte            | a. Internal Examination                                                                               |               |                   | ge                |              |  |  |
| 2 In               | ternal Examina                                                                                        | tions, both s | hould be consid   | ered              |              |  |  |
| b. Ass             | ignments and E                                                                                        | xercises:     | 3 Weighta         | ge                |              |  |  |
| c. Sem             | ninar/ Viva Voc                                                                                       | e:            | 3 Weighta         | ge                |              |  |  |
| d. Atte            | endance:                                                                                              |               | 3 Weighta         | ge                |              |  |  |
| External A         | ssessment (30                                                                                         | Weightages    | ) Duration        | 3 Hours, No of Qa | uestions: 23 |  |  |
|                    | PA                                                                                                    | TTERN OF      | <b>QUESTION P</b> | APER              |              |  |  |
| Division           | DivisionTypeTotal No.No. ofWeightagesTotalofquestions tofor eachWeightagequestionsbe answeredquestion |               |                   |                   |              |  |  |
| Section A          | Short                                                                                                 | 12            | 8                 | 1                 | 8            |  |  |
| Section B          | Short Essay                                                                                           | 7             | 4                 | 3                 | 12           |  |  |
| Section C          | Essay                                                                                                 | 4             | 2                 | 5                 | 10           |  |  |
|                    | Total 30                                                                                              |               |                   |                   |              |  |  |

| MODULE WISE WEIGHTAGE DISTRIBUTION                               |      |  |  |  |
|------------------------------------------------------------------|------|--|--|--|
| Module                                                           | Mark |  |  |  |
| Unit 1: Mathematics for Chemists                                 | 3    |  |  |  |
| Unit 2: Introduction to Quantum Mechanics                        | 6    |  |  |  |
| Unit 3: Quantum Mechanics of Translational & Vibrational Motions | 6    |  |  |  |
| Unit 4: Quantum Mechanics of Rotational Motion                   | 6    |  |  |  |
| Unit 5: Quantum Mechanics of Hydrogen-like Atoms                 | 6    |  |  |  |

| Unit 6: Basic principles of group theory and Representation of Point | 8 |
|----------------------------------------------------------------------|---|
| Unit 7: Applications of Group Theory to Molecular Spectroscopy       | 6 |
| Unit 8: Applications of Group Theory to Chemical Bonding             | 5 |

#### **REFERENCES:**

- 1. F. L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, 1968.
- 2. I N. Levine, Quantum Chemistry, 6th Edition, Pearson Education Inc.,
- P. W. Atkins and R.S. Friedman, Molecular Quantum Mechanics,4th Edition, Oxford University Press, 2005.
- 4. M.W. Hanna, Quantum Mechanics in Chemistry, 2nd Edition, W.A. Benjamin Inc., 1969.
- Donald, A. McQuarrie, Quantum Chemistry, University Science Books, 1983(first Indian edition, Viva books, 2003).
- 6. Thomas Engel, Quantum Chemistry & Spectroscopy, Pearson Education, 2006.
- 7. J. P. Lowe, Quantum Chemistry, 2nd Edition, Academic Press Inc., 1993.
- Horia Metiu, Physical Chemistry Quantum Mechanics, Taylor & Francis,2006.
- 9. A.K. Chandra, Introduction to Quantum Chemistry, 4th Edition, Tata McGraw-Hill, 1994.
- L. Pauling and E.B. Wilson, Introduction to Quantum Mechanics, McGraw-Hill, 1935 (A good source book for manyderivations).
- 11. R.L. Flurry, Jr., Quantum Chemistry, Prentice Hall, 1983.
- 12. R.K. Prasad, Quantum Chemistry, 3rd Edition, New Age International, 2006
- F.A. Cotton, Chemical applications of Group Theory, 3rdEdition, John Wiley&SonsInc.,2003.
- H. H. Jaffe and M. Orchin, Symmetry in Chemistry, John Wiley & Sons Inc., 1965.
- 15. L.H. Hall, Group Theory and Symmetry in Chemistry, McGraw Hill, 1969.
- R. McWeeny, Symmetry: An Introduction to Group Theory and its Applications, Pergamon Press, London, 1963.
- P.H. Walton, Beginning Group Theory for Chemistry, Oxford University Press Inc., New ork,1998.
- 18. Mark Ladd, Symmetry & Group Theory in Chemistry, Horwood1998.

- 19. A Salahuddin Kunju & G. Krishnan, Group Theory & its Applications in Chemistry, PHI Learning, Pvt. Ltd.2010.
- 20. Arthur M Lesk, Introduction to Symmetry & Group theory for Chemists, Kluwer, Academic Publishers, 2004.
- 21. K.Veera Reddy, Symmetry & Spectroscopy of Molecules 2nd Edn., New Age International 2009.
- 22. A.W. Joshi, Elements of Group Theory for Physicists, New Age International Publishers, 1997.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER I

| COURSE CODE –MCH1C02<br>CHEMISTRY OF ELEMENTS |   |          |          |       |
|-----------------------------------------------|---|----------|----------|-------|
| Credit Hours/week Weightage                   |   |          |          |       |
|                                               |   | Internal | External | Total |
| 4                                             | 3 | 5        | 30       | 35    |

# **Course Outcomes**

| CO No. | <b>Expected Course Outcome</b><br>Upon completion of this course, students will<br>be able to; | Learning<br>Domain | PSO No |
|--------|------------------------------------------------------------------------------------------------|--------------------|--------|
| CO1    | <i>Identify</i> acids and bases based on different acid-base concepts.                         | Remember           | PSO 1  |
| CO2    | <i>Compare</i> acid and base strengths                                                         | Evaluate           | PSO 3  |
| CO3    | <i>Summarize</i> the chemistry of main group elements                                          | Understand         | PSO 8  |
| CO4    | Construct diagrams of reduction potentials                                                     | Create             | PSO 3  |
| CO5    | Illustrate various concepts of atomic nucleus                                                  | Analyse            | PSO 2  |
| CO6    | <i>Classify</i> different polyhedral structure.                                                | Understand         | PSO 1  |
| CO7    | <i>Distinguish</i> reactions in different types of solvents                                    | Analyse            | PSO 3  |
| CO8    | Judge choice of suitable solvent for reactions.                                                | Evaluate           | PSO 10 |
| CO9    | <i>Differentiate</i> magnetic properties of substances.                                        | Analyze            | PSO 6  |

# **COURSE CONTENT**

| Unit 1: | Concepts of Acids and Bases, and Nonaqueous Solvents                | 8 hours       |  |  |  |
|---------|---------------------------------------------------------------------|---------------|--|--|--|
| 1.1.    | Major acid-base concepts, Arrhenius, Bronsted-Lowry, Solvent s      | ystem, Lux-   |  |  |  |
|         | Flood, Lewis and Usanovich concepts. HSAB principleTheoret          | ical basis of |  |  |  |
|         | hardness and softness.                                              |               |  |  |  |
| 1.2.    | 1.2. The Drago-Wayland equation, E and C parameters- Symbiosis.     |               |  |  |  |
| 1.3.    | Applications of HSAB concept.                                       |               |  |  |  |
| 1.4.    | Super acids, superbases, surface acidity.                           |               |  |  |  |
| 1.5.    | Chemistry of nonaqueous solvents- NH3, SO2, H2SO4, BrF3, HF         | F, N2O4 and   |  |  |  |
|         | HSO3 F. Nonaqueous solvents and acid-base strength.                 |               |  |  |  |
| Unit 2: | Chemistry of Main Group Elements-I                                  | 8 hours       |  |  |  |
| 2.1.    | Boron hydrides-preparation, reactions, structure, and bonding.      |               |  |  |  |
| 2.2.    | Styx numbers-closo, nido, arachno polyhedral structures.            |               |  |  |  |
| 2.3.    | Boron cluster compounds-Wade's rule.                                |               |  |  |  |
| 2.4.    | Polyhedral borane anion-carboranes, metallaboranes and metallac     | arboranes.    |  |  |  |
| 2.5.    | Borazines and borides.                                              |               |  |  |  |
| Unit 3: | Chemistry of Main Group Elements-II                                 | 8 hours       |  |  |  |
| 3.1.    | Silicates and alumino silicates-Structure, molecular sieves-Zeolite | <b>.</b>      |  |  |  |
| 3.2.    | Silicones-Synthesis, structure and uses. Carbides and silicides.    |               |  |  |  |
| 3.3.    | Synthesis, structure, bonding and uses of Phosphorous-Nitrogen, F   | hosphorous    |  |  |  |
|         | -Sulphur and Sulphur-Nitrogen compounds.                            |               |  |  |  |
| Unit 4: | Standard reduction potentials and their diagrammatic                | 0.1           |  |  |  |
|         | representations                                                     | 8 hours       |  |  |  |
| 4.1.    | Ellingham diagram. Latimer and Frost diagrams. Pourbaix diagram     | m.            |  |  |  |
| 4.2.    | Heteropoly and isopoly anions of V, Cr, W, Mo, Polyatomic Zint      | anions and    |  |  |  |
|         | cations.                                                            |               |  |  |  |
| 4.3.    | Chevrel phases.                                                     |               |  |  |  |
| Unit 5: | Magnetic properties of Transition Inner Transition Elements         | 8 hours       |  |  |  |

- 5.1. Term symbols. Magnetic property Paramagnetism, Diamagnetism, Ferromagnetism, Antiferromagnetism, Ferrimagnetism.
- 5.2. Magnetic susceptibility. Curie and Curie-Weiss Law.
- 5.3. Magnetic moment and its expressions. Quenching of orbital magnetic moment. Magnetic exchange interactions-Superexchange and direct exchange.
- 5.4. Determination of magnetic moment of complexes -Gouy Method, Faraday Method, VSM and SQUID.
- 5.5. Uranyl compounds. Trans-actinide elements.

### **Unit 6: Nuclear and Radiation Chemistry**

8 hours

- 6.1. Structure of nucleus: shell, liquid drop, Fermi gas, collective and optical models.
- 6.2. Nuclear reaction: Bethe's notation of nuclear process- Types-reaction cross section- photonuclear and thermonuclear reactions. Super heavy elements production and chemistry.
- 6.3. Nuclear fission: Theory of fission- neutron capture cross section and critical size. Nuclear fusion. Neutron activation analysis
- 6.4. Radiation chemistry: Interaction of radiation with matter. Detection and measurement of radiation- GM and scintillation counters radiolysis of water
  radiation hazards radiation dosimetry.

### **MODE OF TRANSACTION**

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

|             | MODE OF ASSESSMENT                                                                                                            |                |                  |                  |              |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------------------|--------------|--|
| Internal As | ssessment (15                                                                                                                 | Weightage)     |                  |                  |              |  |
| a. Inte     | rnal Examination                                                                                                              | on             | 2 Weighta        | ge               |              |  |
| 2 In        | ternal Examina                                                                                                                | itions, both s | hould be conside | ered             |              |  |
| b. Ass      | ignments and E                                                                                                                | exercises:     | 3 Weighta        | ge               |              |  |
| c. Sem      | ninar/ Viva Voc                                                                                                               | e:             | 3 Weighta        | ge               |              |  |
| d. Atte     | endance:                                                                                                                      |                | 3 Weighta        | ge               |              |  |
| External A  | ssessment (30                                                                                                                 | Weightages     | ) Duration .     | 3 Hours, No of Q | uestions: 23 |  |
|             | PA                                                                                                                            | TTERN OF       | QUESTION P       | APER             |              |  |
| Division    | DivisionTypeTotal No.No. of<br>questions toWeightages<br>for each<br>questionsOf<br>questionsquestions tofor each<br>question |                |                  |                  |              |  |
| Section A   | Section A Short 12 8 1                                                                                                        |                |                  |                  |              |  |
| Section B   | Short Essay                                                                                                                   | 7              | 4                | 3                | 12           |  |
| Section C   | Essay                                                                                                                         | 4              | 2                | 5                | 10           |  |
| Total       |                                                                                                                               |                |                  |                  | 30           |  |

| MODULE WISE WEIGHTAGE DISTRIBUTION                           |      |  |  |  |
|--------------------------------------------------------------|------|--|--|--|
| Module                                                       | Mark |  |  |  |
| Unit 1: Concepts of Acids and Bases, and Nonaqueous Solvents | 7    |  |  |  |
| Unit 2: Chemistry of Main Group Elements-I                   | 8    |  |  |  |
| Unit 3: Chemistry of Main Group Elements-II                  | 8    |  |  |  |
| Unit 4: Standard reduction potentials and their diagrammatic | 8    |  |  |  |

| Unit 5: Magnetic properties of Transition Inner Transition Elements | 8 |
|---------------------------------------------------------------------|---|
| Unit 6: Nuclear and Radiation Chemistry                             | 7 |

#### **REFERENCES:**

- N.N. Greenwood and A. Earnshaw, Chemistry of Elements, 2/e, Elsevier Butterworth- Heinemann, 2005.
- 2. J.E. Huheey, E.A. Keiter, R.L. Keiter. O.K. Medhi. Inorganic Chemistry, principles of structure and reactivity, Pearson Education, 2006.
- 3. G.L. Miessler, D.A. Tarr, Inorganic Chemistry, Pearson, 2010.
- 4. D.F. Shriver, P.W. Atkins, Inorganic Chemistry, Oxford University Press, 2002
- William W Porterfield, Inorganic Chemistry-A unified approach, Academic Press, 2005.
- 6. Keith F Purcell, John C Kotz, Inorganic Chemistry, Cengage Learning, 2010.
- 7. James E House, Inorganic Chemistry, Academic Press, 2008.
- 8. A Earnshaw, Introduction to Magnetochemistry, Academic Press, 1968.
- R.L. Dutta and A. Shyamal, Elements of Magnetochemistry, SChand and Co. 1982.
- 10. H. J. Arnikar, Essentials of Nuclear chemistry, New Age International, 2005.
- Friedlander and J.W. Kennedy, Introduction to Radiochemistry, John Wiley and Sons, 1981.
- S. Glastone, Source Book on Atomic Energy, 3rd Edn. Affiliated East-West Press Pvt. Ltd. 1967

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER I

| COURSE CODE –MCH1C03                          |                             |          |          |       |
|-----------------------------------------------|-----------------------------|----------|----------|-------|
| STRUCTURE AND REACTIVITY OF ORGANIC COMPOUNDS |                             |          |          |       |
| Credit                                        | Credit Hours/week Weightage |          |          |       |
|                                               |                             | Internal | External | Total |
| 4                                             | 3                           | 5        | 30       | 35    |

# **Course Outcomes**

| CO No. | Expected Course OutcomeUpon completion of this course, students will<br>be able to;                                 | - Learning<br>Domain | PSO No |
|--------|---------------------------------------------------------------------------------------------------------------------|----------------------|--------|
| CO1    | <i>Explain</i> and discuss the structure, stability and bonding in organic molecules.                               | Understand           | PSO 2  |
| CO2    | <i>Compare</i> and justify the impact of molecular structure on reactivity of different types of organic reactions. | Evaluate             | PSO 3  |
| CO3    | <i>Explain</i> and design methods from the idea of molecular conformation, mechanism and stereochemical outcome.    | Create               | PSO 10 |
| CO4    | <i>Examine</i> and <i>interpret</i> the different methods of asymmetric synthesis for synthetic applications        | Apply                | PSO 8  |
| CO5    | <i>Apply</i> the concept of stereochemistry to different organic compounds and reactions                            | Apply                | PSO 4  |
| CO6    | <i>Distinguish</i> and <i>develop</i> suitable mechanism using stereochemical aspects.                              | Analyse              | PSO 3  |
| CO7    | <i>Illustrate</i> various concepts of organic mechanism relating with stereochemistry                               | Apply                | PSO 10 |

### **COURSE CONTENT**

| Unit 1: | Structure and Bonding in Organic Molecules                                      | 8 Hours        |
|---------|---------------------------------------------------------------------------------|----------------|
| 1.1.    | Nature of Bonding in Organic Molecules: Localized and delocaliz                 | ed chemical    |
|         | bonding, bonding weaker than covalent bond, cross- conjugation                  | , resonance,   |
|         | rules of resonance, resonance hybrid and resonance energy, t                    | automerism,    |
|         | hyperconjugation, $\pi$ - $\pi$ interactions, $p\pi$ -d $\pi$ bonding (ylides). |                |
| 1.2.    | Stability of benzylic cations and radicals. Effect of delocalized               | electrons on   |
|         | pKa.                                                                            |                |
| 1.3.    | Hydrogen bonding: Inter and intra-molecular hydrogen bonding.                   | Range of the   |
|         | energy of hydrogen bonding.                                                     |                |
| 1.4.    | Physical and chemical properties of organic compounds- volati                   | lity, acidity, |
|         | basicity and stability stabilization of hydrates of glyoxal                     | chloral and    |

- basicity and stability, stabilization of hydrates of glyoxal, chloral, and ninhydrin, high acid strength of maleic acid compared to fumaric acid. Effect of hydrogen bond on conformation.
- 1.5. Electron donor-acceptor complexes, crown ether complexes, cryptates, inclusion compounds and cyclodextrins.
- 1.6. Hückel MO method. MO's of simple molecules, ethylene, allyl radical and 1,3-butadiene. Hückel rule and modern theory of aromaticity, criteria for aromaticity and antiaromaticity, MO description of aromaticity and antiaromaticity.
- 1.7. Homoaromaticity. Aromaticity of annulenes and heteroannulenes, fused ring systems, fulvenes, fulvalenes, azulenes, pentalenes and heptalenes.

## **Unit 2: Structure and Reactivity**

### 8 Hours

- 2.1. Transition state theory, Potential energy vs reaction co-ordinate curve, substituent effects (inductive, mesomeric, inductomeric, electomeric and field effects) on reactivity.
- 2.2. Qualitative study of substitution effects in  $S_N 1-S_N 2$  reactions. Neighbouring group participation, participation of carboxylate ion, halogen, hydroxyl group, acetoxy group, phenyl group and pi -bond. Classical and nonclassical carbocations

- 2.3. Basic concepts in the study of organic reaction mechanisms: Application of experimental criteria to mechanistic studies, kinetic versus thermodynamic control- Hammond postulate, Bell-Evans-Polanyi principle, Marcus equation, Curtin-Hammet principles, Acidity constant, Hammet acidity function.
- 2.4. Isotope effect (labelling experiments), stereochemical correlations.
- 2.5. Semiquantitative study of substituent effects on the acidity of carboxylic acids.
- 2.6. Quantitative correlation of substituent effects on reactivity.
- 2.7. Linear free energy relationships. Hammet and Taft equation for polar effects and Taft's steric substituent constant for steric effect. Solvent effects- Dimroth parameter

### **Unit 3: Conformational Analysis – I**

# 8 Hours

- 3.1. Factors affecting the conformational stability of molecules dipole interaction, bond opposition strain, bond angle strain. Conformation of acyclic compounds Ethane, n- butane, Influence of dipole moment and hydrogen bondng on conformational stability- Conformation of alkene dihalides, glycols, chlorohydrines, tartaric acid, erythro and threo isomer.
- 3.2. Interconversion of axial and equatorial bonds in chair conformation of cylohexane– distance between the various H atoms and C atoms in chair and boat conformations.
- 3.3. Monosubstituted cyclohexane–methyl and t-butyl cyclohexanes–flexible and rigid systems. Conformation of 1,2-, 1,3-, and 1,4 disubstituted cyclohexane
- 3.4. Conformation of substituted cyclohexanone, 2-bromocyclohexanone, dibromocyclo hexanone, (cis & trans), 2-bromo-4,4-dimethyl cyclohexanone. Anchoring group and conformationaly biased molecules.
- 3.5. Conformations of 1,4 -cis and -trans disubstituted cyclohexanes in which one of the substituent is 1-butyl and their importance in assessing the reactivity of an axial or equatorial substituent.
- 3.6. Conformation of 1,2-, 1,3-, and 1,4-cyclohexane diol.

**Unit 4: Conformational Analysis – II** 

- 4.1. Effect of conformation on the course and rate of reactions in (a) debromination of dl and meso 2,3-dibromobutane or stilbene dibromide using KI. (b) semipinacolic deamination of erythro and threo 1,2-diphenyl-1-(p-chlorophenyl)-2-amino ethanol. (c) dehydro halogination of stilbene dihalide (dl and meso) and erythreo threo- bromo-1,2-diphenyl propane.
- 4.2. Effect of conformation on the course and rate of reactions in cyclohexane systems illustrated by: (a) S<sub>N</sub>2 and S<sub>N</sub>1 reactions for (i) an axial substituent, and (ii) an equatorial substituent in flexible and rigid systems. (b) E1, E2 eliminations illustrated by the following compounds. (i) 4-t-Butylcyclohexyl tosylate (cis and trans) (ii) 2- Phenylcyclohexanol (cis and trans) (iii) Menthyl and neomenthyl chlorides and benzene hexachlorides. (c) Pyrolytic elimination of esters (cis elimination) (d) Esterification of axial as well as equatorial hydroxyl and hydrolysis of their esters in rigid and flexible systems. (Compare the rate of esterification of axial as well as equatorial carboxyl groups and hydrolysis of their esters. (g) Hydrolysis of axial and equatorial tosylates. (h) Oxidation of axial and equatorial hydroxyl group to ketones by chromic acid.
- 4.3. Bredt's rule. Stereochemistry of fused, bridged and caged ring systemsdecalins, norbornane, barrelene and adamantanes.

## **Unit 5: Stereochemistry**

### 8 Hours

5.1. Conformation and configuration, Fischer, Newman and Sawhorse projection formulae and their interconversion. Concept of chirality, recognition of symmetry elements and chiral structures, conditions for optical activity, optical purity. Specific rotation and its variation in sign and magnitude under different conditions, relative and absolute configurations, Fisher projection formula, sequence rule – R and S notation in cyclic and acyclic compounds, Cahn-Ingold-Prelog (CIP) rule. Mixtures of stereoisomers; enantiomeric excess and diastereomeric excess and their determination. Methods of resolution diastereomers. Resolution of racemates after conversion into diastereomers; use of S- brucine, kinetic resolution of enantiomers, chiral chromatography.

- 5.2. Optical isomerism of compounds containing one or more asymmetric carbon atoms, enantiotopic, homotopic, diastereotopic hydrogen atoms, prochiral centre. Pro-R, Pro-S, Re and Si.
- 5.3. Optical isomerism in biphenyls, allenes and nitrogen and sulphur compounds, conditions for optical activity, R and S notations. Optical activity in cis-trans conformational isomers of 1,2-, 1,3- and 1,4-dimethylcyclohexanes.
- 5.4. Restricted rotation in biphenyls Molecular overcrowding. Chirality due to folding of helical structures. P/M notations, Chirality due to chiral plane-R/S notation
- 5.5. Geometrical isomerism E and Z notation of compounds with one and more double bonds in acyclic systems. Configuration of cyclic compoundsmonocyclic, fused and bridged ring systems, inter conversion of geometrical isomers. Methods of determination of the configuration of geometrical isomers in acyclic acid cyclic systems, stereochemistry of aldoximes and ketoximes IUPAC nomenclature of regio and stereo isomers of organic molecules.
- 5.6. stereoselectivity and stereospecificity, enatio selectivity and diastereo selectivity. Stereoselective and stereospecific reactions: (i) Bromination of E- and Z-2-butene-a stereospecific anti addition, (ii)Epoxidation of E-and Z-2 butene-a stereospecific reaction, (iii) Bromination of cyclohexene- a stereoselective reaction, (iv) Hydroboration-Oxidation hydration of alkenes- a stereospecific anti-markovnikov hydration (v) Addition of carbenes to alkenes.

### **Unit 6: Asymmetric Synthesis**

#### **8 Hours**

- 6.1. Asymmetric synthesis, need for asymmetric synthesis, stereoselectivity and stereospecificity. Chiral pool: chiral pool synthesis of beetle pheromone component (S)- (–)-ipsenol from (S)-(–)-leucine. conversion of L-tyrosine into L-Dopa.
- 6.2. Classification of Asymmetric reactions into (1) Substrate controlled (2) Chiral auxiliary controlled (3) Chiral reagent controlled and (4) Chiral catalyst controlled.

- 6.3. Substrate controlled asymmetric synthesis: Nucleophillic addition to chiral carbonyl compounds. 1,2-asymmetric induction, Cram's rule and Felkin-Anh model.
- 6.4. Chiral auxiliary controlled asymmetric synthesis: α-Alkylation of chiral enolates, azaenolates, imines and hydrazones, chiral sulfoxides. 1,4-Asymmetric induction and Prelog's rule. Use of chiral auxiliary in Diels-Alder reactions.
- 6.5. Diastereoselective aldol reaction and its explanation by Zimmermann-Traxler model. Auxillary controlled aldol reaction. Double diastereoselection-matched and mismatched aldol reactions
- 6.6. Chiral reagent controlled asymmetric synthesis: Asymmetric reduction using BINAL– H. Asymmetric hydroboration using IPC2BH and IPCBH2. Reduction with CBH reagent. Stereochemistry of Sharpless asymmetric epoxidation and dihydroxylation. Asymmetric aldol reaction:
- 6.7. Chiral catalyst controlled: Ruthenium catalyst with chiral phosphine, Reduction with CBS reagent, Sharpless asymmetric epoxidation and dihydroxylation.

## **MODE OF TRANSACTION**

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

## **MODE OF ASSESSMENT**

## Internal Assessment (15 Weightage)

- a. Internal Examination 2 Weightage 2 Internal Examinations, both should be considered
  b. Assignments and Exercises: 3 Weightage
  c. Seminar/ Viva Voce: 3 Weightage
- d. Attendance:

**External Assessment (30 Weightages)** 

Duration 3 Hours, No of Questions: 23

3 Weightage

| PATTERN OF QUESTION PAPER |                    |    |   |   |    |  |
|---------------------------|--------------------|----|---|---|----|--|
| Division                  | Total<br>Weightage |    |   |   |    |  |
| Section A                 | Short              | 12 | 8 | 1 | 8  |  |
| Section B                 | Short Essay        | 7  | 4 | 3 | 12 |  |
| Section C                 | Essay              | 4  | 2 | 5 | 10 |  |
|                           | 30                 |    |   |   |    |  |

| MODULE WISE WEIGHTAGE DISTRIBUTION                 |      |  |  |  |
|----------------------------------------------------|------|--|--|--|
| Module                                             | Mark |  |  |  |
| Unit 1: Structure and Bonding in Organic Molecules | 7    |  |  |  |
| Unit 2: Structure and Reactivity                   | 8    |  |  |  |
| Unit 3: Conformational Analysis – I                | 8    |  |  |  |
| Unit 4: Conformational Analysis – II               | 8    |  |  |  |
| Unit 5: Stereochemistry                            | 8    |  |  |  |
| Unit 6: Asymmetric Synthesis                       | 7    |  |  |  |

### **REFERENCES:**

 R. R. Carey and R. J. Sundburg, Advanced Organic Chemistry, Part A, Springer, 5/e, 2007.

- M. B. Smith, J. March, March's Advanced Organic Chemistry, John Wiley & Sons, 6/e, 2007.
- T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3/e Addison-Wesley, 1998.
- J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, 2/e, Oxford University Press,2012.
- E. V. Anslyn and D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books, 2005.
- M. S. Singh, Advanced Organic Chemistry: Reactions and Mechanisms, Pearson, 2013.
- P. Sykes, A Guide book to Mechanism in Organic Chemistry, 6/e, Pearson, 2006.
- C. K. Ingold, Structure and Mechanism in Organic chemistry, 2/e, CBS Publishers, 1994.
- E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochemistry of Carbon Compounds, John Wiley, 1997.
- G. L. D. Krupadanam, Fundamentals of Asymmetric Synthesis, Universities Press, 2013.
- Okuyama and Maskill, Organic Chemistry: A Mechanistic Approach, Oxford University Press, 2013
- S. Warren and P. Wyatt, Organic Synthesis: The Disconnection Approach, 2/e, John Wiley & Sons, 2008.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER I

| COURSE CODE – MCH1C04<br>THERMODYNAMICS, KINETICS AND CATALYSIS |            |           |          |       |  |
|-----------------------------------------------------------------|------------|-----------|----------|-------|--|
| Credit                                                          | Hours/week | Weightage | je       |       |  |
|                                                                 |            | Internal  | External | Total |  |
| 4                                                               | 3          | 5         | 30       | 35    |  |

## **Course Outcomes**

| CO. No | Expected Course OutcomeUpon completion of this course, students will be<br>able to;                                                                                                 | Learning<br>Domain | PSO<br>No |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| CO1    | <i>Understand</i> laws and concepts in thermodynamics                                                                                                                               | Remember           | PSO 1     |
| CO2    | <i>Apply</i> laws and concepts in thermodynamics to solve problems                                                                                                                  | Apply              | PSO8      |
| CO3    | <i>Understand</i> various approximations and<br>mechanisms needed to explain kinetics of fast<br>reactions, chain reactions and those involving<br>reactive atoms and free radicals | Remember           | PSO 2     |
| CO4    | <i>Identify</i> basics of various theories in Chemical Kinetics                                                                                                                     | Analyse            | PSO3      |
| CO5    | <i>Apply</i> various theories in Chemical Kinetics to solve problems in kinetics                                                                                                    | Apply              | PSO8      |
| CO6    | <i>Understand</i> fundamental theories and methods in surface chemistry                                                                                                             | Remember           | PSO 1     |
| CO7    | <i>Solve</i> problems in surface chemistry                                                                                                                                          | Apply              | PSO8      |
| CO8    | <i>Acquire</i> knowledge regarding various mechanisms of catalyzed reactions                                                                                                        | Remember           | PSO 2     |
| CO9    | <i>Recognize</i> various techniques used for surface analyses                                                                                                                       | Remember           | PSO11     |

## **COURSE CONTENT**

| Unit 1: | Thermodynamics                                                                | 8 Hours         |  |  |  |
|---------|-------------------------------------------------------------------------------|-----------------|--|--|--|
| 1.1.    | Review of First and Second law of thermodynamics, T                           | hird law of     |  |  |  |
|         | thermodynamics, Need for third law, Nernst heat theorem, Apparent             |                 |  |  |  |
|         | exceptions to third law, Applications of Third law, Determination of Absolute |                 |  |  |  |
|         | entropies, Residual entropy.                                                  |                 |  |  |  |
| 1.2.    | Thermodynamics of Solutions: Partial molar quantities, Chem                   | ical potential, |  |  |  |
|         | Variation of chemical potential with temperature and pressure,                | Partial molar   |  |  |  |
|         | volume and its determination, Gibbs-Duhem equation.                           |                 |  |  |  |
| 1.3.    | Thermodynamics of ideal and real gases and gaseous mixtures,                  | Fugacities of   |  |  |  |
|         | gases and their determinations, Activity, Activity coefficient, sta           | ndard state of  |  |  |  |
|         | substance (for solute and solvents)                                           |                 |  |  |  |
| 1.4.    | Duhem-Margules equation and its applications. Thermodynamic                   | mics of ideal   |  |  |  |
|         | solutions, Deduction of the laws of Raoult's ebullioscopy, cr                 | yoscopy, and    |  |  |  |
|         | osmotic pressure.                                                             |                 |  |  |  |
| 1.5.    | Non ideal solutions, Deviations from Raoult's law, Excess fund                | ctions- excess  |  |  |  |
|         | free energy, excess entropy, excess enthalpy, excess volume.                  |                 |  |  |  |
| Unit 2: | Thermodynamics of Irreversible Processes                                      | 8 Hours         |  |  |  |
| 2.1.    | Thermodynamics of irreversible process: Stationary state conc                 | ept. Principle  |  |  |  |
|         | of local equilibrium.                                                         |                 |  |  |  |
| 2.2.    | Simple examples of irreversible processes, general theory of no               | n-equilibrium   |  |  |  |
|         | processes, forces and fluxes, entropy production in simple irrever            | rsible systems  |  |  |  |
|         | (closed systems) involving heat flow only and both heat flow and              | d matter flow,  |  |  |  |
| 2.3.    | The phenomenological relations, Onsager relations: Linear rela                | tions-coupled   |  |  |  |
|         | flows.                                                                        |                 |  |  |  |
| 2.4.    | Onsager reciprocal relations (no derivation), application to                  | the theory of   |  |  |  |
|         | diffusion, thermal diffusion, thermo-osmosis and thermo- mole                 | cular pressure  |  |  |  |
|         | difference, electro-kinetic effects, the Glansdorf Pregogine equa             | tion.           |  |  |  |
| Unit 3: | Chemical Kinetics                                                             | 8 Hours         |  |  |  |

- 3.1. Kinetics of reactions involving reactive atoms and free radicals Rice -Herzfeld mechanism and steady state approximation in the kinetics of organic gas phase decompositions (acetaldehyde & ethane)
- 3.2. Kinetics of chain reactions branching chain and explosion limits (H<sub>2</sub>-O<sub>2</sub> reaction as an example)
- 3.3. Kinetics of fast reactions- relaxation methods, molecular beams, flash photolysis; Solution kinetics:
- 3.4. Factors affecting reaction rates in solution, Effect of solvent and ionic strength (primary salt effect) on the rate constant, secondary salt effects.

## **Unit 4: Molecular Reaction Dynamics**

## 8 Hours

- 4.1. Reactive encounters: Collision theory, diffusion controlled reactions, the material balance equation, Activated Complex theory the Eyring equation, thermodynamic aspects of ACT; Comparison of collision and activated complex theories
- 4.2. The dynamics of molecular collisions Molecular beams, principle of crossed-molecular beams; Potential energy surfaces attractive and repulsive surfaces, London equation, Statistical distribution of molecular energies
- 4.3. Theories of unimolecular reactions Lindemann's theory, Hinshelwood's modification, Rice -Ramsperger and Kassel (RRK) model.

# **Unit 5: Surface Chemistry**

## 8 Hours

- 5.1. Structure and chemical nature of surfaces, Adsorption at surfaces Adsorption isotherms, Langmuir's unimolecular theory of adsorption, BET equation, derivation
- 5.2. Determination of surface area and pore structure of adsorbents physical adsorption methods, X-ray methods, mercury intrusion method, chemisorption methods.
- 5.3. Determination of surface acidity TPD method. Heat of adsorption and its determination.

Unit 6: Catalysis

8 Hours

- 6.1. Features of homogeneous catalysis Enzyme catalysis Michaelis-Menten Mechanism.
- 6.2. Features of heterogeneous catalysis Langmuir-Hinshelwood mechanism and Eley-Rideal mechanism illustration using the reaction  $2CO + O_2 \rightarrow 2CO_2$ .
- 6.3. Methods of preparation of heterogeneous catalysts precipitation and coprecipitation methods, sol gel method, flame hydrolysis.
- 6.4. Preparation of Zeolites and silica supports.
- 6.5. Auto catalysis oscillating reactions mechanisms of oscillating reactions (Lotko -Volterra, brusselator and oregonator).

## **MODE OF TRANSACTION**

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

## **MODE OF ASSESSMENT**

#### **Internal Assessment (15 Weightage)**

a. Internal Examination 2 Weightage 2 Internal Examinations, both should be considered
b. Assignments and Exercises: 3 Weightage
c. Seminar/ Viva Voce: 3 Weightage
d. Attendance: 3 Weightage

External Assessment (30 Weightages) Duration 3 Hours, No of Questions: 23

| PATTERN OF QUESTION PAPER |             |                              |                                       |                                    |                    |  |
|---------------------------|-------------|------------------------------|---------------------------------------|------------------------------------|--------------------|--|
| Division                  | Туре        | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |  |
| Section A                 | Short       | 12                           | 8                                     | 1                                  | 8                  |  |
| Section B                 | Short Essay | 7                            | 4                                     | 3                                  | 12                 |  |
| Section C                 | Essay       | 4                            | 2                                     | 5                                  | 10                 |  |
| Total                     |             |                              |                                       |                                    | 30                 |  |

| MODULE WISE WEIGHTAGE DISTRIBUTION               |      |  |  |  |
|--------------------------------------------------|------|--|--|--|
| Module                                           | Mark |  |  |  |
| Unit 1: Thermodynamics                           | 7    |  |  |  |
| Unit 2: Thermodynamics of Irreversible Processes | 8    |  |  |  |
| Unit 3: Chemical Kinetics                        | 8    |  |  |  |
| Unit 4: Molecular Reaction Dynamics              | 8    |  |  |  |
| Unit 5: Surface Chemistry                        | 8    |  |  |  |
| Unit 6: Catalysis                                | 7    |  |  |  |

#### **REFERENCES:**

- 1. P.W. Atkins & J. De Paula, Atkins's Physical Chemistry, 10/e, OUP, 2014.
- 2. Keith J. Laidler, Chemical Kinetics 3rd edn., Pearson Education, 1987(Indian reprint 2008).
- Steinfeld, Francisco and Hase, Chemical Kinetics and Dynamics, 2nd edition, Prentice Hall International. Inc
- Santhosh K. Upadhyay, Chemical Kinetics and Reaction Dynamics, Springer, 2006.
- 5. Richard I. Masel, Chemical Kinetics and Catalysis, Wiley Interscience, 2001.
- K.J.Laidler, J.H.Meiser and B. C. Sanctuary, Physical Chemistry, Houghton Mifflin Company, New York, 2003.

- A.W. Adamson, Physical Chemistry of surfaces, 4th edition, Interscience, New York, 1982.
- 8. G. K. Vemulapalli, Physical Chemistry, Printice Hall of India.
- 9. M.K. Adam, The Physics and Chemistry of surfaces, Dover Publications
- 10. S. Glasstone, Thermodynamics for chemists, East-West 1973.
- 11. Rajaram and Kuriokose, Thermodynamics, East-West 1986
- 12. Donald A. Mc Quarrie, John D. Simon, Molecular thermodynamics.
- R.P. Rastogi and G.M. Misra, An Introduction to chemical Thermodynamics, Vikas
- Pigoggine, An introduction to Thermodynamics of irreversible processes, Interscience
- 15. B.G. Kyle, Chemical and Process Thermodynamics, 2nd Edn, Prentice Hall of India
- W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6 Edn., Wiley, 2011.
- Jens Hajen, Industrial Catalysis: A Practical Approach. 2nd Edn., Wiley VCH, 2006.
- 18. Dipak Kumar Chakrabarty, Adsorption and Catalysis by Solids, New Age. 2007.
- 19. C.H. Bartholomew and R.J. Farrauto, Fundamentals of Industrial Catalysis Process, 2nd Edn. Wiley & Sons Inc. 2006.
- Woodruff, D. P. and Delchar T. A., Modern Techniques of Surface Science, Cambridge Solid State Science Series, 1994.
- 21. Kurt K. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, 3rd Edn., Wiley U. K., 2012.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER II

| COURSE CODE –MCH2C05<br>QUANTUM MECHANICS AND COMPUTATIONAL CHEMISTRY |            |           |          |       |  |  |
|-----------------------------------------------------------------------|------------|-----------|----------|-------|--|--|
| Credit                                                                | Hours/week | Weightage |          |       |  |  |
| Crean                                                                 |            | Internal  | External | Total |  |  |
| 3                                                                     | 3          | 5         | 30       | 35    |  |  |

# **Course Outcomes**

ſ

| CO No. | <b>Expected Course Outcome</b><br>Upon completion of this course, students will be<br>able to;                          | Learning<br>Domain | PSO No |
|--------|-------------------------------------------------------------------------------------------------------------------------|--------------------|--------|
| CO1    | Develop working knowledge of terminology<br>and tools used by quantum chemists.                                         | Understand         | PSO 2  |
| CO2    | Evaluate how quantum mechanics manifests itself in nature and experimental science                                      | Evaluate           | PSO 3  |
| CO3    | Summarize various theories of chemical bonding                                                                          | Understand         | PSO 8  |
| CO4    | Construct molecular energy level diagrams                                                                               | Create             | PSO 3  |
| CO5    | Correlate Huckel parameters to various descriptors of conjugated systems                                                | Apply              | PSO 4  |
| CO6    | Learn how computational chemistry can be a valid alternatives and complements to the experimental methods in chemistry. | Understand         | PSO 2  |
| CO7    | Construct Z matrix of various molecules                                                                                 | Create             | PSO 3  |
| CO8    | Evaluate choice of suitable computational methods.                                                                      | Evaluate           | PSO 10 |

# **COURSE CONTENT**

| Unit 1: | <b>Approximation Methods in Quantum Mechanics</b>                                        | 8 Hours                                             |  |  |  |  |
|---------|------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| 1.1.    | 1.1. Many body problem and the need of approximation methods; Independent particle model |                                                     |  |  |  |  |
| 1.2.    | 1.2. Variation method – variation theorem with proof, illustration of variation          |                                                     |  |  |  |  |
|         | theorem using a trial function [e.g., x (a-x)] for particle in a 1D-be                   | ox, variation                                       |  |  |  |  |
|         | treatment for the ground state of helium atom.                                           |                                                     |  |  |  |  |
| 1.3.    | Perturbation method – time-independent perturbation method (nor                          | n-degenerate                                        |  |  |  |  |
|         | case only), illustration by application to particle in a ID-box                          | with slanted                                        |  |  |  |  |
|         | bottom, perturbation treatment of the ground state of the helium a                       | tom.                                                |  |  |  |  |
| Unit 2: | Quantum Mechanics of Many-electron Atoms                                                 | 8 Hours                                             |  |  |  |  |
| 2.1.    | Hartree's Self-Consistent Field method for atoms, Fock modified                          | cation using                                        |  |  |  |  |
|         | spin orbitals & Hartree -Fock Self-Consistent Field (HF-SCF)                             | method for                                          |  |  |  |  |
|         | atoms, the Fock operator.                                                                |                                                     |  |  |  |  |
| 2.2.    | Pauli's antisymmetry principle                                                           |                                                     |  |  |  |  |
| 2.3.    | Slater determinants; Roothan's concept of basis functions                                |                                                     |  |  |  |  |
| 2.4.    | Slater type orbitals (STO) and Gaussian type orbitals(GTO).                              |                                                     |  |  |  |  |
| Unit 3: | Chemical Bonding in Diatomic Molecule                                                    | 8 Hours                                             |  |  |  |  |
| 3.1.    | Schrödinger equation for a molecule, Born – Oppenheimer appro                            | ximation                                            |  |  |  |  |
| 3.2.    | Valence Bond (VB) theory - VB theory of H <sub>2</sub> molecule, single                  | et and triplet                                      |  |  |  |  |
|         | state functions (spin orbitals) of H <sub>2</sub> .                                      |                                                     |  |  |  |  |
| 3.3.    | Molecular Orbital (MO) theory – MO theory of $H_2^+$ ion, MO t                           | heory of H <sub>2</sub>                             |  |  |  |  |
|         | molecule, MO treatment of homonuclear diatomic molecules -                               | Li <sub>2</sub> , Be <sub>2</sub> ,C <sub>2</sub> , |  |  |  |  |
|         | $N_2,O_2$ & $F_2$ and hetero nuclear diatomic molecules – LiH, CO, NO                    | & HF, bond                                          |  |  |  |  |
|         | order                                                                                    |                                                     |  |  |  |  |
| 3.4.    | Spectroscopic term symbols for diatomic molecules; Comparison                            | n of MO and                                         |  |  |  |  |
|         | VB theories                                                                              |                                                     |  |  |  |  |
| Unit 4: | Chemical Bonding in Polyatomic Molecules                                                 | 8 Hours                                             |  |  |  |  |
| L       |                                                                                          |                                                     |  |  |  |  |

- 4.1. Hybridization quantum mechanical treatment of sp, sp2 & sp3 hybridisation.
- 4.2. Semi empirical MO treatment of planar conjugated molecules Hückel Molecular Orbital (HMO) theory of ethylene, butadiene & allylic anion,
- 4.3. Charge distributions and bond orders from the coefficients of HMO, calculation of free valence, HMO theory of aromatic hydrocarbons (benzene);
- 4.4. Formula for the roots of the Hückel determinantal equation, Frost -Hückel circle mnemonic device for cyclic polyenes.

Unit 5: Introduction to Computational Chemistry - I

**8 Hours** 

- 5.1. Electronic structure of molecules Basics of HF-SCF method of molecules (derivation not required).
- 5.2. Classification of Computational Chemistry methods Molecular mechanics methods (concept of force field) and electronic structure methods
- 5.3. Ab initio and semi-empirical methods (Basic idea only), concept of electron correlation and post HF methods. (Elementary idea)

**Unit 6: Introduction to Computational Chemistry – II** 

**8 Hours** 

- 6.1. Basis set approximation in ab initio methods -classification of basis sets minimal, double zeta, triple zeta, split-valence, polarization & diffuse basis sets.
- 6.2. Pople-style basis sets and their nomenclature.
- 6.3. Simple calculations using Gaussian programme
- 6.4. The structure of a Gaussian input file, Types of key words,
- 6.5. Specification of molecular geometry using (a) Cartesian coordinates and (b) Internal coordinates.
- 6.6. The Z-matrix Z- matrices of some simple molecules like H<sub>2</sub>, H<sub>2</sub>O, formaldehyde, cis and trans H<sub>2</sub>O<sub>2</sub>, and NH<sub>3</sub>.

## **MODE OF TRANSACTION**

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

|             |                 | MODE O                       | FASSESSMEN                            | Τ                                  |                    |
|-------------|-----------------|------------------------------|---------------------------------------|------------------------------------|--------------------|
| Internal As | ssessment (15   | Weightage)                   |                                       |                                    |                    |
| a. Inte     | rnal Examinati  | on                           | 2 Weighta                             | ge                                 |                    |
| 2 In        | ternal Examind  | ations, both s               | hould be conside                      | ered                               |                    |
| b. Ass      | ignments and E  | Exercises:                   | 3 Weighta                             | ge                                 |                    |
| c. Sem      | ninar/ Viva Voc | e:                           | 3 Weighta                             | ge                                 |                    |
| d. Atte     | endance:        |                              | 3 Weighta                             | ge                                 |                    |
| External A  | ssessment (30   | Weightages)                  | ) Duration                            | 3 Hours, No of Qa                  | uestions: 23       |
|             | PA              | ATTERN OF                    | <b>QUESTION P</b>                     | APER                               |                    |
| Division    | Туре            | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |
| Section A   | Short           | 12                           | 8                                     | 1                                  | 8                  |
| Section B   | Short Essay     | 7                            | 4                                     | 3                                  | 12                 |
| Section C   | Essay           | 4                            | 2                                     | 5                                  | 10                 |
|             | ·               | •                            |                                       | Total                              | 30                 |

## MODULE WISE WEIGHTAGE DISTRIBUTION

| Module                                           | Mark |
|--------------------------------------------------|------|
| Unit 1: Thermodynamics                           | 7    |
| Unit 2: Thermodynamics of Irreversible Processes | 8    |
| Unit 3: Chemical Kinetics                        | 8    |
| Unit 4: Molecular Reaction Dynamics              | 8    |
| Unit 5: Surface Chemistry                        | 8    |
| Unit 6: Catalysis                                | 7    |

### **REFERENCES:**

- 1. F.L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, 1968.
- 2. I.N. Levine, Quantum Chemistry, 6th Edition, Pearson Education Inc.,
- 3. P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics, 4th Edition, Oxford University Press, 2005.
- M.W. Hanna, Quantum Mechanics in Chemistry, 2nd Edition, W.A. Benjamin Inc. 1969.
- Donald, A. McQuarrie, Quantum Chemistry, University Science Books, 1983 (first Indian edition, Viva books, 2003).
- Thomas Engel, Quantum Chemistry & Spectroscopy, Pearson Education,2006.
- 7. J.P. Lowe, Quantum Chemistry, 2nd Edition, Academic Press Inc., 1993.
- A.K. Chandra, Introduction to Quantum Chemistry, 4th Edition, Tata McGraw-Hill, 1994.
- 9. R.K. Prasad, Quantum Chemistry, 3rd Edition, New Age International, 2006.
- C.N. Datta, Lectures on Chemical Bonding and Quantum Chemistry, Prism Books Pvt.Ltd., 1998.
- C. J. Cramer, Essentials of computational Chemistry: Theories and models, John Wiley & Sons 2002.
- 12. Frank Jensen, Introduction to Computational Chemistry, John Wiley & Sons LTD1999.
- J. Foresman & Aelieen Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., 2000.

- 14. David Young, Computational Chemistry- A Practical Guide for Applying Techniques to Real- World Problems", Wiley -Interscience,2001.
- Errol G. Lewars, Computational Chemistry: Introduction to the theory and applications of molecular quantum mechanics, 2<sup>nd</sup> Edn., Springer 2011.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER II

| COURSE CODE –MCH2C06<br>COORDINATION CHEMISTRY |            |                         |    |    |  |  |
|------------------------------------------------|------------|-------------------------|----|----|--|--|
| Credit                                         | Hours/week | Weightage               |    |    |  |  |
|                                                |            | Internal External Total |    |    |  |  |
| 3                                              | 3          | 5                       | 30 | 35 |  |  |

# **Course Outcomes**

| CO No. | <b>Expected Course Outcome</b><br>Upon completion of this course, students will<br>be able to; | Learning<br>Domain | PSO No |
|--------|------------------------------------------------------------------------------------------------|--------------------|--------|
| CO1    | <i>Identify</i> ligand types                                                                   | Remember           | PSO 1  |
| CO2    | <i>Compare</i> strength of complexes                                                           | Evaluate           | PSO 3  |
| CO3    | Summarize reactions of complexes                                                               | Understand         | PSO 8  |
| CO4    | <i>Construct</i> diagrams of electronic transitions                                            | Create             | PSO 3  |
| CO5    | Illustrate Electron transfer mechanisms                                                        | Analyse            | PSO 2  |
| CO6    | <i>Classify</i> types of photochemical reactions.                                              | Understand         | PSO 1  |
| CO7    | Distinguish structure from spectra                                                             | Analyse            | PSO 3  |
| CO8    | <i>Judge</i> magnetic behaviour of lanthanoids and actinoids.                                  | Evaluate           | PSO 10 |
| CO9    | Differentiate photochemical reactions                                                          | Analyze            | PSO 6  |
| CO10   | <i>Illustrate</i> redox properties in the excited states                                       | Analyse            | PSO 3  |

# **COURSE CONTENT**

| Unit 1: | Stability of Co-ordination Compounds                                    | 5 Hours         |
|---------|-------------------------------------------------------------------------|-----------------|
| 1.1.    | Stereochemistry of coordination compounds. Stepwise and overa           | ll formation    |
|         | constants and the relationship between them.                            |                 |
| 1.2.    | Trends in stepwise formation constants.                                 |                 |
| 1.3.    | Determination of binary formation constants by pH-                      | metry and       |
|         | spectrophotometry.                                                      |                 |
| 1.4.    | Stabilisation of unusual oxidation states.                              |                 |
| 1.5.    | Ambidentate and macrocyclic ligands.                                    |                 |
| 1.6.    | Chelate effect and its thermodynamic origin. Macrocyclic and            | nd template     |
|         | effects.                                                                |                 |
| Unit 2: | Theories of Bonding in Coordination Compounds                           | 8 Hours         |
| 2.1.    | Sidgwick's electronic interpretation of coordination. The valence       | bond theory     |
|         | and its limitations.                                                    |                 |
| 2.2.    | The crystal field and ligand field theories. Splitting of d orbitals in | n octahedral,   |
|         | tetrahedral, square planar, square pyramidal and triagonal bipyrat      | midal fields,   |
|         | LFSE, Dq values                                                         |                 |
| 2.3.    | Jahn Teller (JT) effect                                                 |                 |
| 2.4.    | Theoretical failure of crystal field theory, evidence of covalency i    | n the metal-    |
|         | ligand bond, nephelauxetic effect                                       |                 |
| 2.5.    | Ligand field theory, molecular orbital theory- M.O energy level of      | liagrams for    |
|         | octahedral and tetrahedral complexes without and with                   | $\pi$ -bonding, |
|         | experimental evidences for pi-bonding.                                  |                 |
| Unit 3: | Spectral and Magnetic Properties of Complexes                           | 8 Hours         |
| 3.1.    | Electronic Spectra of complexes: Term symbols of dn sys                 | tem, Racah      |
|         | parameters, splitting of terms in weak and strong octahedral and        | l tetrahedral   |
|         | fields, d-d transitions, selection rules for electronic transitions-e   | ffect of spin   |
|         | orbit coupling and vibronic coupling.                                   |                 |
| 3.2.    | Interpretation of electronic spectra of complexes: Orgel dia            | agrams and      |
|         | demerits, Tanabe-Sugano diagrams, calculation of Dq, B and $\beta$ (Ne  | ephelauxetic    |

ratio) values, spectra of complexes with lower symmetries, charge transfer spectra, luminescence spectra.

3.3. Temperature independent paramagnetism (TIP), magnetic properties of lanthanoid and actinoid complexes spin state cross over.

Unit 4: Coordination Chemistry of Lanthanoids and Actinoids

**5 Hours** 

- 4.1. Term symbols for lanthanide ions, inorganic compounds and coordination complexes of the lanthanoids
- 4.2. Electronic spectra and, general characteristics of actinoid- difference between 4f and 5f orbitals, coordination complexes of the actinoids
- 4.3. Comparative account of coordination chemistry of lanthanoids and actinoids with special reference to electronic spectra and magnetic properties.

## **Unit 5: Characterization of Coordination Complexes**

**8 Hours** 

- 5.1. Infrared spectra of metal complexes. Group frequency concept. Changes in ligand vibrations on coordination- metal ligand vibrations (Carbonyls, thiocyantes, nitro).
- 5.2. Application in coordination complexes.
- 5.3. ESR spectra application to copper complexes.
- 5.4. NMR spectroscopy for structural studies of diamagnetic metal complexes from chemical shift and spin- spin coupling.
- 5.5. Mossbauer spectroscopy- Mossbauer Effect, hyperfine interactions (qualitative treatment).
- 5.6. Application to iron and tin compounds.

## Unit 6: Kinetics and Mechanism of Reactions in Metal Complexes

8 Hours

- 6.1. Thermodynamic and kinetic stability, kinetics and mechanism of nucleophilic substitution reactions in square planar complexes
- 6.2. Trans effect-theory and applications
- 6.3. Kinetics and mechanism of octahedral substitution- water exchange, dissociative and associative mechanisms, base hydrolysis, racemization reactions, solvolytic reactions (acidic and basic).

6.4. Electron transfer reactions: Outer sphere mechanism-Marcus theory, inner sphere mechanism-Taube mechanism, mixed outer and inner sphere reactions, two electron transfer and intramolecular electron transfer.

**Unit 7: Redox and Photochemical Reactions of Complexes** 

6 Hours

- 7.1. Photochemical reactions of metal complexes- Prompt and delayed reactions.
- 7.2. Exited states of metal complexes- Interligand, ligand field, charge transfer and delocalized states. Properties of ligand field excited states.
- 7.3. Photosubstitution-Prediction of substitution lability by Adamson's rules. Photoaquation.
- 7.4. Photo isomerization and photo racemization.
- 7.5. Illustration of reducing and oxidizing character of [Ru(bipy)<sub>3</sub>]<sup>2+</sup> in the excited state.
- 7.6. Metal complex sensitizers- water photolysis.

### **MODE OF TRANSACTION**

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

### MODE OF ASSESSMENT

#### **Internal Assessment (15 Weightage)**

a. Internal Examination

2 Weightage

2 Internal Examinations, both should be considered

b. Assignments and Exercises:

c. Seminar/ Viva Voce:

d. Attendance:

**External Assessment (30 Weightages)** 

Duration 3 Hours, No of Questions: 23

3 Weightage

3 Weightage

3 Weightage

| PATTERN OF QUESTION PAPER |             |                              |                                       |                                    |                    |
|---------------------------|-------------|------------------------------|---------------------------------------|------------------------------------|--------------------|
| Division                  | Туре        | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |
| Section A                 | Short       | 12                           | 8                                     | 1                                  | 8                  |
| Section B                 | Short Essay | 7                            | 4                                     | 3                                  | 12                 |
| Section C                 | Essay       | 4                            | 2                                     | 5                                  | 10                 |
| Total                     |             |                              |                                       |                                    | 30                 |

| MODULE WISE WEIGHTAGE DISTRIBUTION                             |      |  |  |
|----------------------------------------------------------------|------|--|--|
| Module                                                         | Mark |  |  |
| Unit 1: Stability of Co-ordination Compounds                   | 4    |  |  |
| Unit 2: Theories of Bonding in Coordination Compounds          | 8    |  |  |
| Unit 3: Spectral and Magnetic Properties of Complexes          | 8    |  |  |
| Unit 4: Coordination Chemistry of Lanthanoids and Actinoids    | 5    |  |  |
| Unit 5: Characterization of Coordination Complexes             | 8    |  |  |
| Unit 6: Kinetics and Mechanism of Reactions in Metal Complexes | 8    |  |  |
| Unit 7: Redox and Photochemical Reactions of Complexes         | 5    |  |  |

## **REFERENCES:**

- 1. N.N.Greenwood and A.Earnshaw, Chemistry of Elements, 2/e, Butterworth-Heinemann, 2005.
- 2. J.E.Huheey, E.A.Keiter, R.L.Keiter and O.K.Medhi, Inorganic Chemistry, principles of structure and reactivity, Pearson Education, 2006.

- 3. G.L.Miessler, D.A.Tarr, Inorganic Chemistry, Pearson, 2010.
- 4. D.F.Shriver, P.W.Atkins, Inorganic Chemistry, Oxford University Press, 2002
- William W Porterfield, Inorganic Chemistry-A unified approach, Academic Press, 2005.
- 6. Keith F Purcell, John C Kotz, Inorganic Chemistry, Cengage Learning, 2010.
- 7. James E House, Inorganic Chemistry, Academic Press, 2008.
- B.Douglas, D.McDaniel, J.Alexander, Concepts and Models of Inorganic Chemistry, Wiley Student Edition, 2006.
- 9. A.W.Adamson and P.D.Fleischauer, Concepts of Inorganic Photochemistry, Wiley.
- 10. F.A.Cotton and G.Wilkinson, Advanced Inorganic Chemistry, Wiley.
- 11. A.Earnshaw, Introduction to Magnetochemistry, Academic Press, 1968.
- R.L.Dutta and A.Shyamal, Elements of Magnetochemistry, S.Chand and Co. 1982.
- 13. A.E. Martell, Coordination Chemistry, Vol. I
- R.S. Drago, Physical Methods in Inorganic Chemistry, Affiliated East-West Press Pvt. Ltd.,

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER II

| COURSE CODE –MCH2C07<br>REACTION MECHANISM IN ORGANIC CHEMISTRY |            |                         |  |  |  |  |
|-----------------------------------------------------------------|------------|-------------------------|--|--|--|--|
| Credit                                                          | Hours/week | Weightage               |  |  |  |  |
|                                                                 |            | Internal External Total |  |  |  |  |
| 3                                                               | 3          | 5 30 35                 |  |  |  |  |

# **Course Outcomes**

ſ

| CO No. | Expected Course Outcome         Upon completion of this course, students will be         able to;              | Learning<br>Domain | PSO<br>No |
|--------|----------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| CO1    | <i>Classify</i> the different mechanisms of substitution reactions eliminations reactions.                     | Understand         | PSO 2     |
| CO2    | <i>Compare</i> the mechanism and influence of conditions in each type reactions.                               | Evaluate           | PSO 2     |
| CO3    | <i>Summarize</i> the mechanisms of different types of pericyclic and photochemical reactions organic chemistry | Understand         | PSO 2     |
| CO4    | <i>Judge</i> the mechanism of pericyclic reactions through problem solving                                     | Evaluate           | PSO 5     |
| CO5    | <i>Interrelate</i> different types of mechanisms of carbonyl compounds                                         | Understand         | PSO 2     |
| CO6    | <i>Identify</i> the reactive intermediates in Molecular Rearrangements and Transformations                     | Remember           | PSO 1     |
| CO7    | <i>Develop</i> suitable conditions for particular reactions by applying mechanistic aspects.                   | Create             | PSO 7     |

# **COURSE CONTENT**

| Unit 1: | Aliphatic and Aromatic Substitutions                                                                                                                                                                                                                                                                                                                                                                                                     | 8 Hours                                                   |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| 1.1.    | Nucleophilic Aliphatic Substitution: Mechanism and Stereochem<br>and $S_N1$ reactions. Ion pair mechanism. The effect of substra<br>reaction medium, nature of leaving group and nucleophile on S<br>reactions.                                                                                                                                                                                                                          | te structure,                                             |  |
| 1.2.    | S <sub>N</sub> i and neighbouring group mechanism. SET mechanism. Allylic substitutions. Ambident nucleophiles and substrates regioselectiv                                                                                                                                                                                                                                                                                              | -                                                         |  |
| 1.3.    | Electrophilic Aliphatic Substitution: Mechanism and stereochem $SE_2$ (front), $SE_2$ (back) and $SE_1$ reactions. The effect of substral leaving group and reaction medium on $SE_1$ and $SE_2$ reactions.                                                                                                                                                                                                                              | •                                                         |  |
| 1.4.    | Electrophilic Aromatic Substitution: Arenium ion mechanism,<br>effect on reactivity in mono and disubstituted benzene rings, <i>ortho</i><br><i>Ipso</i> substitution. Relationship between reactivity and selectivity.                                                                                                                                                                                                                  | o/para ratio,                                             |  |
| 1.5.    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |  |
| Unit 2: | Addition & Elimination Reactions and Reactive<br>Intermediates                                                                                                                                                                                                                                                                                                                                                                           | 8 Hours                                                   |  |
| 2.1.    | Mechanistic and stereochemical aspects of addition to C=C<br>electrophiles, nucleophiles and free radicals. Effect of substituen<br>addition, orientation of addition, addition to conjugated st<br>cyclopropane rings, Michael reaction.                                                                                                                                                                                                | ts on rate of                                             |  |
| 2.2.    | Mechanistic and stereochemical aspects of $E_1$ , $E_1cB$ and $E_2$ elimite<br>effect of substrate structure, base, leaving group and reaction<br>elimination reactions. Saytzev elimination, Hofmann elimite<br>elimination, pyrolytic syn elimination (Ei) and conjugate e<br>Competition between substitution and elimination reactions,<br>nucleophilicity. Extrusion reactions-extrusion of N <sub>2</sub> , CO and CO <sub>2</sub> | medium on<br>aination, α-<br>eliminations.<br>basicity vs |  |

2.3. Reactive Intermediates: Generation, geometry, stability and reactions of carbonium ions and carbanions, free radicals, carbenes, nitrenes and benzynes.

## **Unit 3: Chemistry of Carbonyl Compounds**

8 Hours

- 3.1. Reactions of Carbon-heteromultiple Bonds: Reactivity of carbonyl compounds toward addition, mechanistic aspects of hydration, addition of alcohols, and condensation with nitrogen nucleophiles to aldehydes and ketones.
- 3.2. Addition of organometallic reagents- Grignard reagents- organozinc, organocopper and organolithium reagents- to carbonyl compounds. Aldol, Perkin, Claison, Dieckmann, Stobbe and benzoin condensation. Darzen's, Knoevenagel, Reformatsky, Wittig, Cannizaro, Mannich and Prins reactions. MPV reduction and Oppenauer oxidation.
- 3.3. Addition to carbon-nitrogen multiple bond: Ritter reaction and Thorpe condensation. Hydrolysis, alcoholysis and reduction of nitriles.
- 3.4. Esterification and Ester Hydrolysis: Mechanisms of ester hydrolysis and esterification, Acyl-oxygen and alkyl oxygen cleavage.

## **Unit 4: Pericyclic Reactions**

**8 Hours** 

- 4.1. Phase and symmetry of molecular orbitals, FMOs of ethylene, 1,3-butadiene, 1,3,5- hexatriene, allyl and 1,3-pentadienyl systems.
- 4.2. Pericyclic reactions: electrocyclic, cycloaddition, sigmatropic, chelotropic and group transfer reactions.
- 4.3. Theoretical models of pericyclic reactions: TS aromaticity method (Dewar-Zimmerman approach), FMO method and Correlation diagram method (Woodward-Hoffmann approach).
- 4.4. Woodward- Hoffmann selection rules for electrocyclic, cycloaddition and sigmatropic reactions.
- 4.5. Stereochemistry of Diels-Alder reactions and regioselectivity.
- 4.6. Cope and Claison rearrangements. Stereochemistry of cope rearrangement and valence tautomerism. 1,3- dipolar cycloaddition reactions and *ene* reactions.

**Unit 5: Photochemistry of Organic Compounds** 

**8 Hours** 

- 5.1. Photochemical excitation of molecules, spin multiplicity, Jablonski diagram, photosensitization and quenching.
- 5.2. Photochemistry of carbonyl compounds: Norrish type-I cleavage of acyclic, cyclic and  $\beta$ ,  $\gamma$ -unsaturated carbonyl compounds,  $\beta$  cleavage,  $\gamma$  hydrogen abstraction: Norrish type-II cleavage, photo reduction, photoenolization.
- 5.3. Photocyclo-addition of ketones with unsaturated compounds: Paterno-Büchi reaction, photodimerisation of  $\alpha$ ,  $\beta$ -unsaturated ketones,
- 5.4. Photo rearrangements: Photo -Fries, di- $\pi$  methane, lumiketone, oxa di- $\pi$  methane rearrangements. Barton and Hoffmann-Loeffler-Freytag reactions.
- 5.5. Photo isomerisation and dimerisation of alkenes, photo isomerisation of benzene and substituted benzenes, photooxygenation.

### **Unit 6: Molecular Rearrangements and Transformations**

### **8 Hours**

- 6.1. Rearrangements occurring through carbocations, carbanions, carbenes and nitrenes such as Wagner-Meerwein, Demjanov, dienone-phenol, benzylbenzilic acid, Favorskii, Wolff, Hofmann, Curtius, Lossen, Schmidt, Beckmann, Fries, Bayer-Villiger, Wittig, Orton, and Fries rearrangements.
- 6.2. Peterson reaction, Woodward and Prevost hydroxylation reactions.
- 6.3. Heck, Negishi, Sonogashira, Stille, and Suzuki coupling reactions (mechanism only).

## MODE OF TRANSACTION

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

|             | MODE OF ASSESSMENT                                                                      |               |                  |                   |              |  |
|-------------|-----------------------------------------------------------------------------------------|---------------|------------------|-------------------|--------------|--|
| Internal As | ssessment (15                                                                           | Weightage)    |                  |                   |              |  |
| a. Inte     | a. Internal Examination 2 Weightage                                                     |               |                  |                   |              |  |
| 2 In        | ternal Examind                                                                          | tions, both s | hould be conside | ered              |              |  |
| b. Ass      | ignments and E                                                                          | exercises:    | 3 Weighta        | ge                |              |  |
| c. Sem      | ninar/ Viva Voc                                                                         | e:            | 3 Weighta        | ge                |              |  |
| d. Atte     | endance:                                                                                |               | 3 Weighta        | ge                |              |  |
| External A  | ssessment (30                                                                           | Weightages    | ) Duration .     | 3 Hours, No of Qa | uestions: 23 |  |
|             | PA                                                                                      | TTERN OF      | QUESTION P       | APER              |              |  |
| Division    | DivisionTypeTotal No.No. ofWeightagesofquestions tofor eachquestionsbe answeredquestion |               |                  |                   |              |  |
| Section A   | Short                                                                                   | 12            | 8                | 1                 | 8            |  |
| Section B   | Short Essay                                                                             | 7             | 4                | 3                 | 12           |  |
| Section C   | Essay                                                                                   | 4             | 2                | 5                 | 10           |  |
|             | Total                                                                                   |               |                  |                   | 30           |  |

| MODULE WISE WEIGHTAGE DISTRIBUTION                                  |      |  |  |
|---------------------------------------------------------------------|------|--|--|
| Module                                                              | Mark |  |  |
| Unit 1: Aliphatic and Aromatic Substitutions                        | 8    |  |  |
| Unit 2: Addition & Elimination Reactions and Reactive Intermediates | 9    |  |  |
| Unit 3: Chemistry of Carbonyl Compounds                             | 9    |  |  |
| Unit 4: Pericyclic reactions                                        | 9    |  |  |

| Unit 5: Photochemistry of Organic Compounds          | 9 |
|------------------------------------------------------|---|
| Unit 6: Molecular Rearrangements and Transformations | 9 |

#### **REFERENCES:**

- M. B. Smith and J. March, March's Advanced Organic Chemistry, 6/e, John Wiley & Sons, 2007.
- F. A. Carey and R. J. Sundburg, Advanced Organic Chemistry, Part A & B, 5/e, Springer, 2007.
- 3. E. V. Anslyn and D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books, 2005.
- T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3/e Addison-Wesley, 1998.
- R. O. C. Norman and J. M. Coxon, Principles of Organic Synthesis, 3/e, CRC Press, 1998.
- Peter Sykes, A Guidebook to Mechanism in Organic Chemistry, 6/e, Pearson, 2006.
- S. Sankararaman, Pericyclic Reactions-A Textbook: Reactions, Applications and Theory, Wiley VCH, 2005.
- Iyan Fleming, Molecular Orbitals and Organic Chemical Reactions, Wiley, 2009.
- J. Sing and J. Sing, Photochemistry and Pericyclic Reactions, 3/e, New Age International, 2012.
- 10. G. M. Loudon, Organic Chemistry, 4/e, Oxford University Press, 2008
- 11. M. B. Smith, Organic Chemistry: An Acid Base Approach, CRC Press, 2010.
- T. Okuyama and H. Maskill, Organic Chemistry A Mechanistic Approach, Oxford University Press, 2014.
- 13. Iyan Fleming, Selected Organic Synthesis, John Wiley and Sons, 1982.
- T. Landbery, Strategies and Tactics in Organic Synthesis, Academic Press, London, 1989.
- E. Corey and I.M. Chang, Logic of Chemical Synthesis, John Wiley, New York, 1989.
- I L. Finar, Organic Chemistry Vol 2: Stereochemistry and the Chemistry of Natural Products, 5/e, Pearson, 2006.

 N. R.Krishnaswamy, Chemistry of Natural Products: A Laboratory Hand Book, 2/e, Universities Press.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER II

| COURSE CODE –MCH2C08<br>ELECTROCHEMISTRY, SOLID STATE CHEMISTRY<br>AND STATISTICAL THERMODYNAMICS |            |           |          |       |  |
|---------------------------------------------------------------------------------------------------|------------|-----------|----------|-------|--|
| Credit                                                                                            | Hours/week | Weightage |          |       |  |
| citait                                                                                            |            | Internal  | External | Total |  |
| 3                                                                                                 | 3          | 5         | 30       | 35    |  |

## **Course Outcomes**

| CO No. | <b>Expected Course Outcome</b><br>Upon completion of this course, students will be able to; | Learning<br>Domain | PSO No |
|--------|---------------------------------------------------------------------------------------------|--------------------|--------|
| CO1    | <i>Identify</i> crystal systems.                                                            | Remember           | PSO 1  |
| CO2    | <i>Compare</i> distribution functions                                                       | Evaluate           | PSO 3  |
| CO3    | Summarize properties of solids                                                              | Understand         | PSO 8  |
| CO4    | <i>Construct</i> stereographic projections                                                  | Create             | PSO 3  |
| CO5    | Illustrate ionic interactions                                                               | Analyse            | PSO 2  |
| CO6    | Classify point groups of solids                                                             | Understand         | PSO 1  |
| CO7    | Distinguish reference electrodes                                                            | Analyse            | PSO 3  |
| CO8    | Judge choice of fuel cells .                                                                | Evaluate           | PSO 3  |
| CO9    | <i>Differentiate</i> magnetic properties of substances.                                     | Analyze            | PSO 6  |
| CO10   | <i>Outline</i> polarographic technique.                                                     | Analyze            | PSO 5  |

### **COURSE CONTENT**

Unit 1: Ionic Interaction & Equilibrium Electrochemistry

- 1.1. The nature of electrolytes, Ion activity, Ion-ion and ion-solvent interaction, The electrical potential in the vicinity of an ion, Electrical potential and thermodynamic functions.
- 1.2. The Debye-Hückel equation, Limiting and extended forms of the Debye-Hückel equation, Applications of the Debye-Hückel equation for the determination of thermodynamic equilibrium constants and to calculate the effect of ionic strength on ion reaction rates in solution
- 1.3. Origin of electrode potentials-half cell potential-standard hydrogen electrode, reference electrodes- electrochemical series, applications- cell potential, Nernst equation for electrode and cell potentials, Nernst equation for potential of hydrogen electrode and oxygen electrode- thermodynamics of electrochemical cells, efficiency of electrochemical cells and comparison with heat engines
- 1.4. Primary cells (Zn, MnO2) and secondary cells (lead acid, Ni-Cd and Ni-MH cells), electrode reactions, potentials and cell voltages, advantages and limitations three types of secondary cells.
- 1.5. Fuel cells; polymer electrolyte fuel cell (PEMFCs), alkaline fuel cells (AFCs), phosphoric acid fuel cells (PAFCs), direct methanol fuel cells, electrode reactions and potentials, cell reactions and cell voltages, advantages and limitations of four types of fuel cells

#### **Unit 2: Dynamic Electrochemistry**

#### **8 Hours**

- 2.1. Electrical double layer-electrode kinetics of electrode processes, the Butler-Volmer equation-The relationship between current density and overvoltage, the Tafel equation. Polarization-electrolytic polarization, dissolution and deposition potentials, concentration polarization
- 2.2. Overvoltage: hydrogen overvoltage and oxygen overvoltage: decomposition potential and overvoltage, individual electrode over voltages and its determination-metal deposition over voltage and its determination

- 2.3. Theories of hydrogen overvoltage, the catalytic theory, the slow discharge theory, the electrochemical theory.
- 2.4. Principles of polarography-dropping mercury electrode, the half wave potential.

## Unit 3: Solid State – I

8 Hours

- 3.1. Crystal symmetry: Symmetry elements and symmetry operations, mathematical proof for the non-existence of 5-fold axis of symmetry
- 3.2. Crystal systems, Bravais lattices and crystal classes, Crystallographic point groups Schönflies & Hermann–Mauguin notations,
- 3.3. Stereographic projections of the 27 axial point groups
- 3.4. Translational symmetry elements & symmetry operations screw axes and glide planes, introduction to space groups.
- 3.5. Bragg's law and applications, lattice planes and miller indices, d-spacing formulae, crystal densities and unit cell contents
- 3.6. Imperfections in solids point, line and plane defects, non-stoichiometry.

### Unit 4: Solid State – II

**8** Hours

- Electronic structure of solids free electron theory, band theory & Zone theory, Brillouin zones;
- 4.2. Electrical properties electrical conductivity, Hall effect, dielectric properties, piezo electricity, ferro-electricity, and ionic conductivity
- 4.3. Superconductivity- Meissner effect, brief discussion of Cooper theory of superconductivity.
- 4.4. Optical properties photo conductivity, luminescence, colour centres, lasers, refraction & birefringence.
- 4.5. Magnetic properties diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism & ferrimagnetism
- 4.6. Thermal properties thermal conductivity and specific heat

Unit 5: Statistical Thermodynamics- I

8 Hours

5.1. Fundamentals – concept of distribution, thermodynamic probability and most probable distribution, ensembles

- 5.2. Statistical mechanics for systems of independent particles and its importance in chemistry, thermodynamic probability & entropy, idea of microstates and macrostates, statistical weight factor (g), Sterling approximation
- 5.3. Maxwell- Boltzman statistics. The molecular partition function and its relation to the thermodynamic properties, derivation of third law of thermodynamics.
- 5.4. Equilibrium- constant & equi-partition principle in terms of partition functions, relation between molecular & molar partition functions, factorisation of the molecular partition function into translational, rotational, vibrational and electronic parts, the corresponding contributions to the thermodynamic properties
- 5.5. Evaluation of partition functions and thermodynamic properties for ideal mono-atomic and diatomic gases.

### Unit 6: Statistical Thermodynamics- II

8 Hours

- 6.1. Heat capacities of solids classical and quantum theories, Einstein's theory of atomic crystals and Debye's modification.
- 6.2. Quantum Statistics: Bose Einstein distribution law, Bose-Einstein condensation, application to liquid helium; Fermi Dirac distribution law, application to electrons in metals
- 6.3. Relationship between Maxwell-Boltzman, Bose-Einstein, and Fermi-Dirac statistics.

## **MODE OF TRANSACTION**

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

|             | MODE OF ASSESSMENT                                                                      |                |                   |                  |              |  |  |
|-------------|-----------------------------------------------------------------------------------------|----------------|-------------------|------------------|--------------|--|--|
| Internal As | Internal Assessment (15 Weightage)                                                      |                |                   |                  |              |  |  |
| a. Inte     | a. Internal Examination 2 Weightage                                                     |                |                   |                  |              |  |  |
| 2 In        | ternal Examina                                                                          | itions, both s | hould be conside  | ered             |              |  |  |
| b. Ass      | ignments and E                                                                          | exercises:     | 3 Weighta         | ge               |              |  |  |
| c. Sem      | ninar/ Viva Voc                                                                         | e:             | 3 Weighta         | ge               |              |  |  |
| d. Atte     | endance:                                                                                |                | 3 Weighta         | ge               |              |  |  |
| External A  | ssessment (30                                                                           | Weightages     | ) Duration .      | 3 Hours, No of Q | uestions: 23 |  |  |
|             | PA                                                                                      | TTERN OF       | <b>QUESTION P</b> | APER             |              |  |  |
| Division    | DivisionTypeTotal No.No. ofWeightagesofquestions tofor eachquestionsbe answeredquestion |                |                   |                  |              |  |  |
| Section A   | Section A Short 12 8 1                                                                  |                |                   |                  |              |  |  |
| Section B   | Short Essay                                                                             | 7              | 4                 | 3                | 12           |  |  |
| Section C   | Essay                                                                                   | 4              | 2                 | 5                | 10           |  |  |
|             | Total                                                                                   |                |                   |                  | 30           |  |  |

| MODULE WISE WEIGHTAGE DISTRIBUTION                       |      |  |  |
|----------------------------------------------------------|------|--|--|
| Module                                                   | Mark |  |  |
| Unit 1: Ionic Interaction & Equilibrium Electrochemistry | 8    |  |  |
| Unit 2: Dynamic Electrochemistry                         | 9    |  |  |
| Unit 3: Solid State – I                                  | 9    |  |  |
| Unit 4: Solid State – II                                 | 9    |  |  |

| Unit 5: Statistical Thermodynamics- I  | 9 |
|----------------------------------------|---|
| Unit 6: Statistical Thermodynamics- II | 9 |

- N.N. Greenwood and A. Earnshaw, Chemistry of Elements, 2/e, Elsevier Butterworth- Heinemann, 2005.
- 2. J.E. Huheey, E.A. Keiter, R.L. Keiter. O.K. Medhi. Inorganic Chemistry, Principles of structure and reactivity, Pearson Education, 2006.
- 3. G.L. Miessler, D.A. Tarr, Inorganic Chemistry, Pearson, 2010.
- 4. D.F. Shriver, P.W. Atkins, Inorganic Chemistry, Oxford University Press, 2002
- William W Porterfield, Inorganic Chemistry-A unified approach, Academic Press, 2005.
- 6. Keith F Purcell, John C Kotz, Inorganic Chemistry, Cengage Learning, 2010.
- 7. James E House, Inorganic Chemistry, Academic Press, 2008.
- 8. Earnshaw, A., Introduction to Magnetochemistry, Academic Press, 1968.
- R.L. Dutta and A. Shyamal, Elements of Magnetochemistry, SChand and Co. 1982.
- 10. H.J. Arnikar, Essentials of Nuclear chemistry, New Age International, 2005.
- Friedlander and J.W. Kennedy, Introduction to Radiochemistry, John Wiley and Sons, 1981.
- S. Glastone, Source Book on Atomic Energy, 3rd Edn. Affiliated East-West Press Pvt. Ltd. 1967.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER I & II

|                                                                          | SEMESTERT  |           |          |       |  |
|--------------------------------------------------------------------------|------------|-----------|----------|-------|--|
| COURSE CODE –MCH1L01 & MCH2L04<br>INORGANIC CHEMISTRY PRACTICALS– I & II |            |           |          |       |  |
| Credit                                                                   | Hours/week | Weightage |          |       |  |
|                                                                          |            | Internal  | External | Total |  |
| 3                                                                        | 4          | 10        | 30       | 40    |  |

# **Course Outcomes**

| CO No. | CO No. Expected Course Outcome Upon completion of this course, students will be able to;                          |         | PSO No.              |
|--------|-------------------------------------------------------------------------------------------------------------------|---------|----------------------|
| CO1    | CO1 <b>Recall</b> and <b>explain</b> the principles involved in<br>inorganic qualitative and qualitative analysis |         | PSO6                 |
| CO2    | CO2 Apply the concepts like common ion effect<br>and solubility product principle in analyzing<br>cations         |         | PSO4                 |
| CO3    | CO3 <i>Analyze</i> common and less familiar cations                                                               |         | PSO4                 |
| CO4    | <i>Develop</i> laboratory competence in relating chemical structures using spectroscopy                           | Create  | PSO9                 |
| CO5    | CO5 <i>Measure</i> the quantity of different ions using colorimetry                                               |         | PSO5                 |
| CO6    | <i>Develop</i> critical thinking and analysis skill to solve complex inorganic problems                           | Analyze | PSO3<br>PSO5<br>PSO6 |

| Experiment 128 Hours                                              |                                                                                                                                                            |                 |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| Unit 1                                                            | Inorganic Cation Mixture Analysis                                                                                                                          |                 |  |  |
| 1.1.                                                              | Separation and identification of four metal ions of which two ar<br>elements like W, Se Te, Mo, Ce, Th, Ti, Zr, V, U and Li. (El<br>radicals not present). |                 |  |  |
| 1.2.                                                              | Confirmation by spot tests and comparison with heat engines                                                                                                |                 |  |  |
| Unit 2                                                            | Volumetric Analysis                                                                                                                                        |                 |  |  |
| 2.1.                                                              | Volumetric Determinations using: EDTA (Al, Ba, Ca, Cu, Fe, Not of water)                                                                                   | i, Co, hardness |  |  |
| 2.2.                                                              | Cerimetry (Fe <sup>2+</sup> , nitrite)                                                                                                                     |                 |  |  |
| 2.3.                                                              | Potassium Iodate (Iodide, Sn2+)                                                                                                                            |                 |  |  |
| Unit 3                                                            | Colorimetric Analysis                                                                                                                                      |                 |  |  |
| 3.1. Colorimetric Determinations of metal ions Fe, Cr, Ni, Mn and |                                                                                                                                                            |                 |  |  |
|                                                                   |                                                                                                                                                            |                 |  |  |
|                                                                   | Mode of Transaction                                                                                                                                        |                 |  |  |

Mode of Transaction

**Demonstrations:** Helps to illustrate and consolidate theoretical principles outlined in the course.

**Experimentation:** This involves learning by doing or hands on experience by applying chemical principles.

**Observation:** It involves noticing or perceiving the course of the experiment or measurement by equipment and acquisition of information from the primary source:

# Mode of Assessment

# Internal Assessment (10 Weightage)

| a.    | Attendance:                          | 2 weightage   |  |  |  |
|-------|--------------------------------------|---------------|--|--|--|
| b.    | Lab skill/quality of their results:  | 2 weightage   |  |  |  |
| c.    | Model practical test:                | 2 weightage   |  |  |  |
|       | (Best one, out of two model exams is | s considered) |  |  |  |
| d.    | Record:                              | 2 weightage   |  |  |  |
| e.    | Viva Voce:                           | 2 weightage   |  |  |  |
| Exter | External Assessment (30 Weightage)   |               |  |  |  |

SEE will be at the end of the second semester.

- 1. G.H. Jeffery, J. Basseett, J. Mendham and R.C. Denny, Vogel's Textbook of Quantitative Chemical Analysis, 5th Edition, ELBS, 1989.
- D.A. Skoog and D.M. West, Analytical Chemistry, An Introduction, 4th Edition, CBS Publishing Japan Ltd., 1986.
- 3. E.J. Meehan, S. Bruckenstein and I.M. Kolthoff and E.B. Sandell, Quantitative Chemical Analysis, 4th Edition, The Macmillan Company, 1969.
- 4. R.A. Day (Jr.) and A.L. Underwood, Quantitative Analysis, 6th Edition, Prentice Hall of India,1993.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER I & II

| COURSE CODE –MCH1L02 & MCH2L05<br>ORGANIC CHEMISTRY PRACTICALS– I & II |                   |           |    |    |  |
|------------------------------------------------------------------------|-------------------|-----------|----|----|--|
| Credit                                                                 | Hours/week        | Weightage |    |    |  |
|                                                                        | Internal External |           |    |    |  |
| 3                                                                      | 4                 | 10        | 30 | 40 |  |

# **Course Outcomes**

| CO No. | Expected Course OutcomeUpon completion of this course, students will<br>be able to;               | Learning<br>Domain | PSO No.              |
|--------|---------------------------------------------------------------------------------------------------|--------------------|----------------------|
| CO1    | <i>Recall</i> and explain the principles involved in organic qualitative and qualitative analysis | Remember           | PSO6                 |
| CO2    | CO2 <i>Apply</i> the concepts like solvent polarity in the separation of organic mixtures         |                    | PSO4                 |
| CO3    | <i>Analyse</i> and identify organic compounds with more than one functional group.                | Analyse            | PSO4                 |
| CO4    | <i>Develop</i> laboratory competence in relating chemical structures using spectroscopy           | Create             | PSO9                 |
| CO5    | <i>Prepare</i> and measure the yield of organic compounds.                                        | Evaluate           | PSO5                 |
| CO6    | <i>Develop</i> and create methods to synthesis novel organic compounds.                           | Create             | PSO3<br>PSO5<br>PSO6 |

| Experiment                                                                                                                                                      | 128 Hours |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| Unit 1: Laboratory Techniques                                                                                                                                   |           |  |  |  |
| 1.1. Methods of Separation and Purification of Organic Compounds – fractional, steam and low-pressure distillations, fractional crystallisation and sublimation |           |  |  |  |
| Unit 2: Separation and identification of the components of organic binary mixtures                                                                              |           |  |  |  |
| 2.1. Microscale analysis is preferred. Analysis of about ten binary of which containing compounds with more than one functional                                 |           |  |  |  |
| 2.2. Separation and identification of a few ternary mixtures.                                                                                                   |           |  |  |  |
| Unit 3: Organic preparations                                                                                                                                    |           |  |  |  |
| <ul><li>3.1. Double stage (minimum six)</li><li>3.2. Three stage (minimum two)</li></ul>                                                                        |           |  |  |  |

# **Mode of Transaction**

**Demonstrations:** Helps to illustrate and consolidate theoretical principles outlined in the course.

**Experimentation:** This involves learning by doing or hands on experience by applying chemical principles.

**Observation:** It involves noticing or perceiving the course of the experiment or measurement by equipment and acquisition of information from the primary source:

# Mode of Assessment

# Internal Assessment (10 Weightage)

a. Attendance:

2 weightage

| b.                                 | Lab skill/quality of their results:  | 2 weightage   |  |  |
|------------------------------------|--------------------------------------|---------------|--|--|
| с.                                 | Model practical test:                | 2 weightage   |  |  |
|                                    | (Best one, out of two model exams is | s considered) |  |  |
| d.                                 | Record:                              | 2 weightage   |  |  |
| e.                                 | Viva Voce:                           | 2 weightage   |  |  |
| <b>F</b> -4                        | External Assessment (20 Weighters)   |               |  |  |
| External Assessment (30 Weightage) |                                      |               |  |  |

SEE will be at the end of the second semester.

- 1. B.S. Furnis, A.J. Hannaford, P.W.G. Smith and A.R. Tatchell, Vogel's Textbook of Practical Organic Chemistry, 5/e, Pearson, 1989.
- Shriner, Fuson and Cartin, Systematic Identification of Organic Compounds, 1964. Fieser, Experiments in Organic Chemistry, 1957.
- Dey, Sitaraman and Govindachari, A Laboratory Manual of Organic Chemistry, 3rdEdition, 1957.
- 4. P.R. Singh, D.C. Gupta and K.S. Bajpal, Experimental Organic Chemistry, Vol. I and II, 1980.
- Vishnoi, Practical Organic Chemistry.Pavia, Kriz, Lampman, and Engel, A Microscale Approach to Organic Laboratory Techniques, 5/e, Cengage, 2013.
- Mohrig, Hammond and Schatz, Techniques in Organic Chemistry: Miniscale, Standard Taper Microscale and Williamson Microscale, 3/e, W. H. Freeman and Co., 2010.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER I & II

| COURSE CODE –MCH1L03 & MCH2L06<br>PHYSICAL CHEMISTRY – I & II |            |           |          |       |
|---------------------------------------------------------------|------------|-----------|----------|-------|
| Credit                                                        | Hours/week | Weightage |          |       |
|                                                               |            | Internal  | External | Total |
| 3                                                             | 4          | 10        | 30       | 40    |

#### **Course Outcomes**

| CO No. | Expected Course Outcome<br>Upon completion of this course, students will<br>be able to;                                                                         | Learning<br>Domain     | PSO No. |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|
| CO1    | <i>Develop</i> analytical skills in determining the physical properties (physical constants).                                                                   | Create                 | PSO4    |
| CO2    | <i>Develop</i> skill in setting up an experimental method to determine the physical properties.                                                                 | Create                 | PSO4    |
| CO3    | <i>Estimate</i> physical parameters                                                                                                                             | Understand             | PSO6    |
| CO4    | <i>Explain</i> the principles of Viscometry,<br>Refractometry, Potentiometry and<br>Conductometry; and to apply the skill to<br>determine unknown concentration | Understand<br>Apply    | PSO6    |
| CO5    | <i>Demonstrate</i> the principles of Solubility,<br>Phase equilibria and Distribution Law                                                                       | Understand             | PSO5    |
| CO6    | <i>Interpret</i> the measured data and draw conclusion                                                                                                          | Understand<br>Evaluate | PSO5    |
| CO7    | <i>Calculate</i> various physical parameters                                                                                                                    | Apply                  | PSO5    |

| Experi  | ment                                                                                                                                                                             | 128 Hours     |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|
| Unit 1: | Unit 1: Solubility and Heat of solution (minimum 2 experiments)                                                                                                                  |               |  |  |  |  |
| 1.1.    | <ol> <li>Determination of molar heat of solution of a substance (e.g., ammonium oxalate, succinic acid) from solubility data - analytical method and graphical method</li> </ol> |               |  |  |  |  |
| Unit 2: | Phase Equilibria (minimum 3 experiments)                                                                                                                                         |               |  |  |  |  |
| 2.1.    | Determination of phase diagram of a simple eutectic system (e. Naphthalene- Diphenyl amine)                                                                                      | g., Biphenyl, |  |  |  |  |
| 2.2.    | Determination of the composition of a binary solid mixture.                                                                                                                      |               |  |  |  |  |
| 2.3.    | Determination of phase diagram of a binary solid system forming                                                                                                                  | a compound    |  |  |  |  |
|         | (e.g., Naphthalene – m-dinitrobenzene).                                                                                                                                          |               |  |  |  |  |
| Unit 3: | Viscosity (minimum 2 experiments)                                                                                                                                                |               |  |  |  |  |
| 3.1.    | Viscosity of mixtures - Verification of Kendall's equation (e.g                                                                                                                  | g., benzene - |  |  |  |  |
| 3.2.    | nitrobenzene, water-alcohol).<br>3.2. Determination of molecular weight of a polymer (e.g., polystyrene in                                                                       |               |  |  |  |  |
| Unit 4: | Distribution Law (minimum 3 experiments)                                                                                                                                         |               |  |  |  |  |
| 4.1.    | Determination of distribution coefficient of I2 between CCl4 and                                                                                                                 | l H2O.        |  |  |  |  |
| 4.2.    | Determination of equilibrium constant of $KI + I2 = KI3$                                                                                                                         |               |  |  |  |  |
| 4.3.    | Determination of concentration of KI solution                                                                                                                                    |               |  |  |  |  |
| Unit 5: | Refractometry (minimum 3 experiments)                                                                                                                                            |               |  |  |  |  |
| 5.1.    | Determination of molar refractions of pure liquids (e.g., wate<br>ethanol, chloroform, carbon tetrachloride, glycerol)                                                           | er, methanol, |  |  |  |  |
| 5.2.    | Determination of composition of liquid mixtures (e.g., alc glycerol-water)                                                                                                       | ohol -water,  |  |  |  |  |
| 5.3.    | Determination of molar refraction and refractive index of a solid                                                                                                                |               |  |  |  |  |

Unit 6: Conductivity (minimum 4 experiments)

- 6.1. Determination of equivalent conductance of a weak electrolyte (e.g.,
- 6.2. acetic acid), verification of Ostwald's dilution law and calculation of dissociation constant.
- 6.3. Determination of solubility product of a sparingly soluble salt (e.g., AgCl, BaSO<sub>4</sub>)
- 6.4. Conductometric titrations- HCl vs NaOH, (HCl + CH<sub>3</sub>-COOH) vs NaOH
- 6.5. Determination of the degree of hydrolysis of aniline hydrochloride

Unit 7: Potentiometry (minimum 3 experiments)

- 7.1. Potentiometric titration: HCl vs NaOH, CH<sub>3</sub>-COOH vs NaOH
- 7.2. Redox titration: KI vs KMnO<sub>4</sub>, FeSO<sub>4</sub> vs K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>
- 7.3. Determination of dissociation constant of acetic acid by potentiometric titration
- 7.4. Determination of pH of weak acid using Potentiometry
- 7.5. Determination of pH of acids and bases using pH meter

# Mode of Transaction

**Demonstrations:** Helps to illustrate and consolidate theoretical principles outlined in the course.

**Experimentation:** This involves learning by doing or hands on experience by applying chemical principles.

**Observation:** It involves noticing or perceiving the course of the experiment or measurement by equipment and acquisition of information from the primary source:

# Mode of Assessment

# Internal Assessment (10 Weightage)

a. Attendance:

2 weightage

| b.                                 | Lab skill/quality of their results:  | 2 weightage   |  |  |  |
|------------------------------------|--------------------------------------|---------------|--|--|--|
| с.                                 | Model practical test:                | 2 weightage   |  |  |  |
|                                    | (Best one, out of two model exams is | s considered) |  |  |  |
| d.                                 | Record:                              | 2 weightage   |  |  |  |
| e.                                 | Viva Voce:                           | 2 weightage   |  |  |  |
| <b>F</b> (                         |                                      |               |  |  |  |
| External Assessment (30 Weightage) |                                      |               |  |  |  |

SEE will be at the end of the second semester.

#### **References:**

- 1. J.B. Firth, Practical Physical Chemistry, Read Books (Reprint 2008).
- 2. A Finlay, Practical Physical Chemistry, Longman's Green & Co.
- 3. A.M. James, Practical Physical Chemistry, Longman, 1974.
- 4. F. Daniel, J.W. Williams, P. Bender, R.A. Alberty, C.D. Cornwell and J.E. Harriman,
- 5. Experimental Physical Chemistry, McGraw Hill, 1970.
- 6. W.G. Palmer, Experimental Physical Chemistry, 2nd Edition, Cambridge University Press, 1962.
- 7. D.P. Shoemaker and C.W. Garland, Experimental Physical Chemistry, McGraw Hill.
- 8. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, 1989.
- B. Viswanathan & R.S. Raghavan, Practical Physical Chemistry, Viva Books, 2009.
- 10. G. Brauer, Handbook of Preparative Inorganic Chemistry.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER III

-

| COURSE CODE –MCH3C09<br>MOLECULAR SPECTROSCOPY |                   |           |    |    |  |
|------------------------------------------------|-------------------|-----------|----|----|--|
| Credit                                         | Hours/week        | Weightage |    |    |  |
|                                                | Internal External |           |    |    |  |
| 4                                              | 4                 | 5         | 30 | 35 |  |

# **Course Outcomes**

r

| CO No. | Expected Course Outcome Upon completion of this course, students will be able to                           | Learning<br>Domain | PSO No           |
|--------|------------------------------------------------------------------------------------------------------------|--------------------|------------------|
| CO1    | Understand the quantum chemical principles<br>through spectroscopy                                         | Understand         | PSO 1<br>PSO 8   |
| CO2    | <i>Identify</i> basic physical chemistry law that govern molecular spectroscopy                            | Remember           | PSO 3            |
| CO3    | CO3 Summarize the basic information on molecular<br>spectroscopic methods (IR, Raman, UV-VIS,<br>NMR, EPR) |                    | PSO 8            |
| CO4    | <i>Select</i> the molecular spectroscopy methods for solving given scientific problem                      | Create             | PSO 3            |
| CO5    | <i>Analyse</i> various spectra of organic molecules and identify the differences                           | Analyse            | PSO 2<br>PSO 3   |
| CO6    | <i>Distinguish</i> the importance of spectroscopic technique in material sciences                          | Analyse            | PSO 3            |
| CO7    | Structural <i>determination</i> of organic compounds using spectroscopic techniques                        | Apply              | PSO 8            |
| CO8    | <i>Evaluate</i> choice of suitable spectroscopic method for a organic molecule.                            | Evaluate           | PSO 3,<br>PSO 10 |

Unit 1: Basic Aspects and Microwave Spectroscopy - Theory only

- 1.1. Electromagnetic radiation & it's different regions, Interaction of matter with radiation and its effect on the energy of a molecule, Factors affecting the width and Intensity of Spectral lines.
- Microwave spectroscopy Rotation spectra of diatomic and poly atomic molecules - rigid and non-rigid rotator models, asymmetric, symmetric and spherical tops, isotope effect on rotation spectra.
- 1.3. Stark effect, nuclear and electron spin interactions, rotational transitions and selection rules, determination of bond length using microwave spectral data.

#### Unit 2: Infrared, Raman and Electronic Spectroscopy - Theory only 8 Hours

- 2.1. Vibrational spectroscopy -Normal modes of vibration of a molecule; Vibrational spectra of diatomic molecules, anharmonicity, Morse potential, fundamentals, overtones, hot bands, combination bands, difference bands; Vibrational spectra of polyatomic molecules; Vibration- rotation spectra of diatomic and polyatomic molecules, spectral branches -P, Q & R branches.
- 2.2. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy
- 2.3. Raman spectroscopy –Classical and Quantum theory of Raman effect Pure rotational & pure vibrational Raman spectra, vibrational-rotational Raman spectra, selection rules, mutual exclusion principle; Introduction to Resonance Raman spectroscopy (basics only).
- 2.4. Electronic Spectroscopy- Characteristics of electronic transitions Vibrational coarse structure, intensity of electronic transitions, Franck -Condon principle, types of electronic transitions; Dissociation and predissociation; Ground and excited electronic states of diatomic molecules; Electronic spectra of polyatomic molecules; Electronic spectra of conjugated molecules.
- 2.5. Fluorimetry: General discussion-relationship between intensity and concentration- applications

# **8 Hours Unit 3: Magnetic Resonance Spectroscopy - Theory only** 3.1. NMR: Quantum mechanical description of Energy Levels -Population of energy-nuclear shielding- Chemical shift- Spin-Spin coupling and splitting of NMR signals- Quantum mechanical Description- AX and AB NMR pattern-Karplus relationship 3.2. Nuclear Overhauser Effect- FT NMR- 2D NMR COSY 3.3. Electron Spin Resonance: Quantum mechanical description of electron spin in a magnetic field- Energy levels-Population- Mc Connell Relation 3.4. Equivalent and non-equivalent nucleus - g anisotropy. Unit 4: NQR, Mossbauer and Surface Enhanced Raman Scattering **8 Hours** 4.1. Nuclear Quadrupole Resonance Spectroscopy: Principle, transitions for axially symmetric systems, transitions for Nonaxial symmetric systems, NQR group frequencies 4.2. Mossbauer Spectroscopy: The Mossbauer effect, hyperfine interactions, isomer shift, electric quadruple and magnetic hyperfine interactions. 4.3. Surface Enhanced Raman Scattering: Introduction, Surfaces for SERS study, Surface Selection Rules, Representative Spectra, Applications of SERS **Unit 5: Electronic** & Vibrational **Spectroscopy** in Organic **8** Hours Chemistry 5.1. UV-Visible spectroscopy: Factors affecting the position and intensity of electronic absorption bands - conjugation, solvent polarity and steric parameters 5.2. Empirical rules for calculating $\lambda_{max}$ of dienes, enones and benzene derivatives. 5.3. Optical Rotatory Dispersion and Circular Dichroism: Linearly and circularly polarized lights, circular birefringence, ellipticity and circular dichroism, ORD and Cotton effect. 5.4. Octant rule and Axial haloketone rule for the determination of conformation and Configuration of 3-methyl cyclohexanone and cis- and trans decalones. CD curves 5.5. Infrared Spectroscopy: Functional group and fingerprint regions

- 5.6. Factors affecting vibrational frequency: Conjugation, coupling, electronic, steric, ring strain and hydrogen bonding.
- 5.7. Important absorption frequencies of different class of organic compoundshydrocarbons, alcohols, thiols, carbonyl compounds, amines, nitriles

Unit 6: NMR Spectroscopy in Organic Chemistry - I

8 Hours

- 6.1. 1HNMR: Chemical shift, factors influencing chemical shift, anisotropic effect. Chemical shift values of protons in common organic compounds, Chemical, magnetic and stereochemical equivalence.
- 6.2. Enantiotopic, diasteriotopic and homotopic protons. Protons on oxygen and nitrogen. Quadrupole broadening. Spin spin coupling, types of coupling.
- 6.3. Coupling constant, factors influencing coupling constant, effects of chemical exchange, fluxional molecules, hindered rotation on NMR spectrum,
- 6.4. First order and non-first order NMR spectra, Karplus relationship.

# Unit 7: NMR Spectroscopy in Organic Chemistry - II

8 Hours

- 7.1. Simplification of NMR spectra: double resonance, shift reagents, increased field strength, deuterium labelling. NOE spectra, heteronuclear coupling. Introduction to COSY, HMBC, HMQC spectra
- 7.2. <sup>13</sup>CNMR: General considerations, comparison with PMR, factors influencing carbon chemical shifts, carbon chemical shifts and structure-saturated aliphatics, unsaturated aliphatics, carbonyls, and aromatics.
- 7.3. Off-resonance and noise decoupled spectra, Introduction to DEPT, INEPT, INADEQUATE.

# Unit 8: Mass Spectrometry and Spectroscopy for Structure Elucidation 8 Hours

- 8.1. Mass Spectrometry: Basic concept of EIMS. Molecular ion and meta stable ion peaks, Isotopic peaks. Molecular weight and molecular formula
- 8.2. Single and multiple bond cleavage, rearrangements-McLafferty rearrangements.

- 8.3. Fragmentation pattern of some common organic compounds saturated and unsaturated hydrocarbons, ethers, alcohols, aldehydes and ketones, amines and amides.
- 8.4. High resolution mass spectrometry, index of hydrogen deficiency, Nitrogen rule and Rule of Thirteen.Ionization techniques. FAB spectra.
- 8.5. Structural determination of organic compounds using spectroscopic techniques (Problem solving approach)

#### **MODE OF TRANSACTION**

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

#### **MODE OF ASSESSMENT**

#### Internal Assessment (15 Weightage)

- a. Internal Examination 2 Weightage 2 Internal Examinations, both should be considered
- b. Assignments and Exercises: 3 Weightage
- c. Seminar/ Viva Voce: 3 Weightage
- d. Attendance:

External Assessment (30 Weightages)

Duration 3 Hours, No of Questions: 23

#### PATTERN OF QUESTION PAPER

3 Weightage

| Division  | Туре        | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |
|-----------|-------------|------------------------------|---------------------------------------|------------------------------------|--------------------|
| Section A | Short       | 12                           | 8                                     | 1                                  | 8                  |
| Section B | Short Essay | 7                            | 4                                     | 3                                  | 12                 |
| Section C | Essay       | 4                            | 2                                     | 5                                  | 10                 |
|           | •           | •                            | ·                                     | Total                              | 30                 |

| MODULE WISE WEIGHTAGE DISTRIBUTION                                |      |  |  |  |
|-------------------------------------------------------------------|------|--|--|--|
| Module                                                            | Mark |  |  |  |
| Unit 1: Basic Aspects and Microwave Spectroscopy - Theory only    | 6    |  |  |  |
| Unit 2: Infrared, Raman and Electronic Spectroscopy - Theory only | 6    |  |  |  |
| Unit 3: Magnetic Resonance Spectroscopy - Theory only             | 6    |  |  |  |
| Unit 4: NQR, Mossbauer and Surface Enhanced Raman Scattering      | 7    |  |  |  |
| Unit 5: Electronic & Vibrational Spectroscopy in Organic          | 7    |  |  |  |
| Unit 6: NMR Spectroscopy in Organic Chemistry - I                 | 7    |  |  |  |
| Unit 7: NMR Spectroscopy in Organic Chemistry - II                | 7    |  |  |  |
| Unit 8: Mass Spectrometry and Spectroscopy for Structure          | 7    |  |  |  |

- 1. G.M. Barrow, Introduction to Molecular Spectroscopy, McGraw Hill, 1962.
- C.N. Banwell & E. M. McCash, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill, New Delhi, 1994.
- 3. Thomas Engel, Quantum Chemistry & Spectroscopy, Pearson education, 2006.
- P. Atkins & J. De Paula, Atkins's Physical Chemistry, 8th Edition, W.H. Freeman & Co., 2006.
- D.A. McQuarrie and J.D. Simon, Physical Chemistry A Molecular Approach, University Science Books, 1997.
- 6. D.N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques, UniversityPress,2000.
- 7. R.S. Drago, Physical methods for Chemists, Second edition, Saunders College

- 8. Publishing 1977 (For NMR and EPR, Mossbauer)
- 9. Gunther, NMR Spectroscopy: Basic Principles, Concepts and Applications in
- 10. Chemistry, 2/e, John Wiley
- Ferraro, Nakamoto and Brown, Introductory Raman Spectroscopy, 2/e, Academic Press, 2005.
- 12. Lambert, Organic Structural Spectroscopy,2/e, Pearson
- 13. Silverstein, Spectrometric Identification of Organic Compounds, 6/e, JohnWiley
- 14. Pavia, Spectroscopy, 4/e, -Cengage
- 15. Jag Mohan, Organic Spectroscopy: Principles and Applications, 2/e, Narosa
- 16. Fleming, Spectroscopic Methods in Organic Chemistry, 6/eMcGraw-Hill
- 17. P S Kalsi, Spectroscopy of organic compounds, New Age International, 2007
- 18. William Kemp, Organic Spectroscopy, 3e, Palgrave, 2010

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER III

| COURSE CODE –MCH3C10<br>ORGANOMETALLIC AND BIOINORGANIC CHEMISTRY |            |           |          |       |  |
|-------------------------------------------------------------------|------------|-----------|----------|-------|--|
| Credit                                                            | Hours/week | Weightage |          |       |  |
|                                                                   |            | Internal  | External | Total |  |
| 4                                                                 | 3          | 5         | 30       | 35    |  |

#### **Course Outcomes**

Г

| CO No. | O No. Expected Course Outcome Upon completion of this course, students will be able to; |            | PSO No.        |
|--------|-----------------------------------------------------------------------------------------|------------|----------------|
| CO1    | <i>Identify</i> denticity and hapticity of ligands.                                     | Remember   | PSO 1          |
| CO2    | <i>Compare</i> storage and transport proteins                                           | Evaluate   | PSO 3          |
| CO3    | <i>Summarize</i> role of enzymes and coenzymes                                          | Understand | PSO 8          |
| CO4    | Illustrate action of anti-cancer drugs                                                  | Analyse    | PSO 2          |
| CO5    | <i>Classify</i> role of metal ions in biological systems                                | Understand | PSO 1          |
| CO6    | <i>Discriminate</i> role of the two photosystems                                        | Analyse    | PSO 3          |
| CO7    | Judge structure of clusters.                                                            | Evaluate   | PSO 10         |
| CO8    | <i>Differentiate</i> magnetic properties of substances.                                 | Analyse    | PSO 6          |
| CO9    | CO9 <i>Categorize</i> reactions of organometallic compounds.                            |            | PSO 6<br>PSO 5 |
| CO10   | Indicate fluxional isomerism                                                            | Understand | PSO 1          |
| CO1    | <i>Contrast</i> polymerization by different catalysts                                   | Evaluate   | PSO 11         |

| Unit 1: | Organometallic Compounds-Synthesis, Structure and<br>Bonding                     | 8 Hours        |  |  |  |  |
|---------|----------------------------------------------------------------------------------|----------------|--|--|--|--|
| 1.1.    | 1.1. Denticity and hapticity of common ligands, organometallic compounds with    |                |  |  |  |  |
|         | linear pi donor ligands-olefins, acetylenes, dienes and allyl comp               | lexes-         |  |  |  |  |
| 1.2.    | 1.2. Synthesis, structure and bonding. Synthesis and structure of complexes with |                |  |  |  |  |
|         | cyclic pi donors, metallocenes and cyclic arene complexes                        |                |  |  |  |  |
| 1.3.    | Bonding in ferrocene and dibenzenechromium, carbene a                            | nd carbyne     |  |  |  |  |
|         | complexes.                                                                       |                |  |  |  |  |
| Unit 2: | Metal clusters                                                                   | 8 Hours        |  |  |  |  |
| 2.1.    | Metal carbonyls: CO as a $\pi$ -bonding ligand, synergism,                       | preparation,   |  |  |  |  |
|         | properties, structure and bonding of simple mono and binu                        | iclear metal   |  |  |  |  |
|         | carbonyls, metal nitrosyls, metal cyanides and dinitrogen comple                 | xes.           |  |  |  |  |
| 2.2.    | Polynuclear metal carbonyls with and without bridging. Carbon                    | nyl clusters-  |  |  |  |  |
|         | LNCC and HNCC, Isoelectronic and isolobal analogy, Wade-M                        | lingos rules,  |  |  |  |  |
|         | cluster valence electrons.                                                       |                |  |  |  |  |
| 2.3.    | IR spectral studies of bridging and non-bridging CO ligands. Carb                | oide clusters. |  |  |  |  |
| Unit 3: | Reactions of organometallic compounds and catalysis                              | 10 Hours       |  |  |  |  |
| 3.1.    | Organometallic reactions - ligand dissociation and substitution                  | n- Oxidative   |  |  |  |  |
|         | addition and reductive elimination. Insertion reactions involve                  | ing CO and     |  |  |  |  |
|         | alkenes, $\alpha$ , $\beta$ , $\gamma$ and $\delta$ eliminations.                |                |  |  |  |  |
| 3.2.    | Carbonylation by Collman's reagent. Electrophilic and Nucleo                     | philic attack  |  |  |  |  |
|         | on coordinated ligand. Redistribution reactions                                  |                |  |  |  |  |
| 3.3.    | Fluxional isomerism of allyl, cyclopentadienyl and allene system                 | s.             |  |  |  |  |
| 3.4.    | Homogeneous and heterogeneous catalysis: Tolman catalytic lo                     | oops, alkene   |  |  |  |  |
|         | hydrogenation using Wilkinson catalyst, Hydroformylation of c                    | olefins using  |  |  |  |  |
|         | cobalt and rhodium catalysts, Wacker process, Monsanto acetic a                  | acid process,  |  |  |  |  |
|         | Cativa process and olefin metathesis.                                            |                |  |  |  |  |

- 3.5. Heterogeneous catalysis by organometalic compounds: Polymerization by organometallic initiators and templates for chain propagation- Ziegler Natta catalysts, polymerisation by metallocene catalysts.
- 3.6. Reactions of carbon monoxide and hydrogen-the water gas shift reaction, the Fischer- Tropsch reaction (synthesis of gasoline).

# **Unit 4: Organometallic Polymers**

# (6 hrs)

- 4.1. Polymers with organometallic moieties as pendant groups,
- 4.2. polymers with organometallic moieties in the main chain,
- 4.3. condensation polymers based on ferrocene and on rigid rod polyynes,
- 4.4. polymers prepared by ring opening polymerization, organometallic dendrimers.

# Unit 5: Bioinorganic Chemistry-I

- 5.1. Occurrence of inorganic elements in biological systems- bulk and trace metal ions. Emergence of bioinorganic chemistry. Coordination sites in biologically important ligands.
- 5.2. Role of alkali metal ions in biological systems. Structural role of calcium.
- 5.3. Storage and transport of metal ions- ferritin, transferrin and siderophores.
- 5.4. Oxygen transport by heme proteins-hemoglobin and myoglobin-structure of the oxygen binding site-nature of heme-dioxygen binding-cooperativity. Hemerythrin and hemocyanin.
- 5.5. Ion transport across membranes. The sodium/potassium pump.

# Unit 6: Bioinorganic Chemistry-II

8 Hours

- 6.1. Electron carrier proteins. Iron-Sulphur proteins and cytochromes. Metallo enzymes-Iron enzymes: Cytochrome P-450, catalase and peroxidase.
- 6.2. Copper enzymes: Oxidase, superoxide dismutase and tyrosinase.
- 6.3. Zinc enzymes: Carboxypeptidase and carbonic anhydrase.
- 6.4. Cobalt enzymes Vitamin B12 and coenzymes. Vitamin B12 and coenzymes.
- 6.5. Chlorophil II- Photosystem I and II. Nitrogen fixation-Nitrogenases.
- 6.6. Anticancer drugs. Action of Cis-platin.

8 Hours

#### **MODE OF TRANSACTION**

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

# MODE OF ASSESSMENT

#### Internal Assessment (15 Weightage)

| a. | Internal Examination                 | mination 2 Weightage |  |
|----|--------------------------------------|----------------------|--|
|    | 2 Internal Examinations, both should | d be considered      |  |
| b. | Assignments and Exercises:           | 3 Weightage          |  |
| c. | Seminar/ Viva Voce:                  | 3 Weightage          |  |

d. Attendance: 3 Weightage

External Assessment (30 Weightages)

Duration 3 Hours, No of Questions: 23

# PATTERN OF QUESTION PAPER

| Division  | Туре        | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |
|-----------|-------------|------------------------------|---------------------------------------|------------------------------------|--------------------|
| Section A | Short       | 12                           | 8                                     | 1                                  | 8                  |
| Section B | Short Essay | 7                            | 4                                     | 3                                  | 12                 |
| Section C | Essay       | 4                            | 2                                     | 5                                  | 10                 |
|           | •           |                              |                                       | Total                              | 30                 |

| MODULE WISE WEIGHTAGE DISTRIBUTION                          |      |  |  |
|-------------------------------------------------------------|------|--|--|
| Module                                                      | Mark |  |  |
| Unit 1: Organometallic Compounds-Synthesis, Structure and   | 8    |  |  |
| Unit 2: Metal clusters                                      | 9    |  |  |
| Unit 3: Reactions of organometallic compounds and catalysis | 12   |  |  |
| Unit 4: Organometallic Polymers                             | 6    |  |  |
| Unit 5: Bioinorganic Chemistry-I                            | 9    |  |  |
| Unit 6: Bioinorganic Chemistry-II                           | 9    |  |  |

- N.N. Greenwood and A. Earnshaw, Chemistry of Elements, 2/e, Elsevier Butterworth- Heinemann, 2005.
- 2. J.E. Huheey, E.A. Keiter, R.L. Keiter. O.K. Medhi, Inorganic Chemistry, principles of structure and reactivity, Pearson Education, 2006.
- 3. G.L. Miessler, D.A. Tarr, Inorganic Chemistry, Pearson, 2010.
- 4. D.F. Shriver, P.W. Atkins, Inorganic Chemistry, Oxford University Press, 2002
- William W Porterfield, Inorganic Chemistry-A unified approach, Academic Press, 2005.
- 6. Keith F Purcell, John C Kotz, Inorganic Chemistry, Cengage Learning, 2010.
- 7. James E House, Inorganic Chemistry, Academic Press, 2008.
- B.Douglas, D.McDaniel, J.Alexander, Concepts and Models of Inorganic Chemistry, Wiley Student Edition, 2006.
- 9. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley.
- R.C. Mehrothra and A. Singh, Organometallic Chemistry, A Unified Approach, Wiley Eastern.
- 11. P. Powell, Principles of Organometallic Chemistry, ELBS.
- B.D. Gupta and A.J. Elias, Basic Organometallic Chemistry, Concepts, Synthesis and Applications, Universities Press, 2010.
- 13. Piet W.N. M.Yan Leeuwen, Homogeneous Catalysis, Springer, 2010.
- S.J. Lippard and J.M.Berg, Principles of Bioinorganic Chemistry, University Science Books.

 Ivano Bertini, H.B. Grey, S.J. Lippard and J. S. Valentine, Bioinorganic Chemistry, Viva Books Pvt. Ltd., 1998.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER III

|                                                                           | 00         |           |          |       |
|---------------------------------------------------------------------------|------------|-----------|----------|-------|
| COURSE CODE –MCH3C11<br>REAGENTS AND TRANSFORMATIONS IN ORGANIC CHEMISTRY |            |           |          |       |
| Credit                                                                    | Hours/week | Weightage |          |       |
|                                                                           |            | Internal  | External | Total |
| 4                                                                         | 3          | 5         | 30       | 35    |

# **Course Outcomes**

| CO No. | <b>Expected Course Outcome</b><br>Upon completion of this course, students will be able to;   | Learning<br>Domain | PSO<br>No      |
|--------|-----------------------------------------------------------------------------------------------|--------------------|----------------|
| CO1    | <i>Identify</i> various reagents for specific organic conversions.                            | Remember           | PSO 1          |
| CO2    | <i>Compare</i> the suitable reagents for various organic transformation                       | Evaluate           | PSO 3          |
| CO3    | <i>Summarize</i> the organic transformations                                                  | Understand         | PSO 2          |
| CO4    | <i>Explain</i> the mechanism and stereochemistry behind various reactions.                    | Create             | PSO 7          |
| CO5    | <i>Illustrate</i> applications of various reagents                                            | Analyse            | PSO 2<br>PSO 3 |
| CO6    | <i>Classify</i> types of organic reactions                                                    | Understand         | PSO 1          |
| CO7    | <i>Choose</i> the correct reagents for the specific transformations                           | Create             | PSO 3<br>PSO7  |
| CO8    | <i>Summarize</i> the use of organometallic reagents carbon -carbon bond formations reactions. | Understand         | PSO2           |
| CO9    | <i>Differentiate</i> structure and reactions of heterocyclic compounds                        | Analyze            | PSO 6          |

| Oxidations                                                                             | 8 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1.1. Oxidation of alcohols to carbonyls using DMSO, oxoammonium ions and               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| transition metal oxidants (chromium, manganese, iron, ruthenium).                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Epoxydation of alkenes by peroxy acids, Sharpless asymmetric epoxidation,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Jacobsen epoxidation, dihydroxylation of alkenes using permanga                        | nate ion and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| osmium tetroxide, Prévost and Woodward dihydroxylations                                | , Sharpless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| asymmetric dihydroxylation.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Allylic oxidation with CrO3-Pyridine reagent. Oxidative cleavag                        | e of alkenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| to carbonyls using O <sub>3</sub> .                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Oxidative decarboxylation, Riley reaction, Baeyer-Villiger oxid                        | ation, Dess-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Martin oxidation, Swern oxidation, hydroboration-oxidation.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Reductions                                                                             | 8 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Catalytic hydrogenation of alkenes and other function                                  | nal groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| (heterogeneous and homogeneous), Noyori asymmetric hyd                                 | drogenation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| hydrogenolysis.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Liquid ammonia reduction with alkali metals.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Metal hydride reductions. Reduction of carbonyl group with hy                          | ydrazine, p-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| tosylhydrazine, diimide and semicarbazide.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Clemmensen reduction, Birch reduction. Wolff-Kishner reduction                         | , Bouveault-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Blanc reduction, MPV reduction, hydroboration                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Pinacol coupling, McMurry coupling, Shapiro reaction.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Synthetic Reagents                                                                     | 8 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Synthetic applications of Crown ethers, $\beta$ -cyclodextrins, PTC, is                | onic liquids,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Baker's yeast, NBS, LDA, LiAlH <sub>4</sub> , LiBH <sub>4</sub> , DIEA, BuLi, diborand | e, 9-BBN, t-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| butoxycarbonylchloride, DCC, Gilman's reagent, lithium dimet                           | hyl cuprate,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| tri-n-butyltinhydride, 1,3-dithiane, trimethyl silyl chloride, Pb(C                    | DAc)4, ceric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| ammonium nitrate, DABCO, DMAP, DBU, DDQ, DEAD and Lin                                  | dlar catalyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| in organic synthesis.                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                        | transition metal oxidants (chromium, manganese, iron, ruthenium<br>Epoxydation of alkenes by peroxy acids, Sharpless asymmetric of<br>Jacobsen epoxidation, dihydroxylation of alkenes using permanga<br>osmium tetroxide, Prévost and Woodward dihydroxylations<br>asymmetric dihydroxylation.<br>Allylic oxidation with CrO <sub>3</sub> -Pyridine reagent. Oxidative cleavag<br>to carbonyls using O <sub>3</sub> .<br>Oxidative decarboxylation, Riley reaction, Baeyer-Villiger oxid<br>Martin oxidation, Swern oxidation, hydroboration-oxidation.<br><b>Reductions</b><br>Catalytic hydrogenation of alkenes and other function<br>(heterogeneous and homogeneous), Noyori asymmetric hyd-<br>hydrogenolysis.<br>Liquid ammonia reduction with alkali metals.<br>Metal hydride reductions. Reduction of carbonyl group with h-<br>tosylhydrazine, diimide and semicarbazide.<br>Clemmensen reduction, Birch reduction. Wolff-Kishner reduction<br>Blanc reduction, MPV reduction, hydroboration<br>Pinacol coupling, McMurry coupling, Shapiro reaction.<br><b>Synthetic Reagents</b><br>Synthetic applications of Crown ethers, β-cyclodextrins, PTC, ic<br>Baker's yeast, NBS, LDA, LiAlH4, LiBH4, DIEA, BuLi, diborand<br>butoxycarbonylchloride, DCC, Gilman's reagent, lithium dimet<br>tri-n-butyltinhydride, 1,3-dithiane, trimethyl silyl chloride, Pb(C<br>ammonium nitrate, DABCO, DMAP, DBU, DDQ, DEAD and Lin |  |  |  |  |

| Unit 4: | Chemistry of Polymers                                                                 | 8 Hours       |  |  |  |  |
|---------|---------------------------------------------------------------------------------------|---------------|--|--|--|--|
| 4.1.    | 4.1. Classification of polymers, chain, step, free-radical and ionic polymerizations. |               |  |  |  |  |
|         | Plastics, rubbers and fibers, thermosets and thermoplastics, linear, branched,        |               |  |  |  |  |
|         | cross-linked and network polymers, block and graft copolymers.                        |               |  |  |  |  |
| 4.2.    | Natural and synthetic rubbers.                                                        |               |  |  |  |  |
| 4.3.    | Biopolymers: Primary, secondary and tertiary structure of protein                     | S             |  |  |  |  |
| 4.4.    | Merrifield solid phase peptide synthesis, Protecting groups                           | s, sequence   |  |  |  |  |
|         | determination of peptides and proteins                                                |               |  |  |  |  |
| 4.5.    | Structure and synthesis of glutathione, structure of RNA and DN                       | A, structure  |  |  |  |  |
|         | of cellulose and starch,                                                              |               |  |  |  |  |
| 4.6.    | Conversion of cellulose to rayon.                                                     |               |  |  |  |  |
| Unit 5: | Heterocyclic chemistry                                                                | 8 Hours       |  |  |  |  |
| 5.1.    | Aromatic and nonaromatic heterocyclics. Structure, synthesis and                      | reactions of  |  |  |  |  |
|         | a few heterocyclics- aziridine, oxirane, pyridine, imidazole.                         |               |  |  |  |  |
| 5.2.    | Structure, synthesis and reactions of fused ring heterocycles:                        | Benzofuran,   |  |  |  |  |
|         | Indole, Benzothiophene, Quinoline, Benzoxazole, B                                     | enzthiazole,  |  |  |  |  |
|         | Benzimidazole, Triazoles, Oxadiazoles and Tetrazole.                                  |               |  |  |  |  |
| 5.3.    | Structure and synthesis of Azepines, Oxepines, Thiepins, Dia                          | zepines and   |  |  |  |  |
|         | Benzodiazepines.                                                                      |               |  |  |  |  |
| 5.4.    | Structure and synthesis (Reichstein process) of Vitamin C                             | (Reichstein   |  |  |  |  |
|         | process).                                                                             |               |  |  |  |  |
| 5.5.    | Synthesis of uracil, thymine, adenine and guanine                                     |               |  |  |  |  |
| Unit 6: | New reactions in organic synthesis                                                    | 8 Hours       |  |  |  |  |
| 6.1.    | Carbon- Carbon double bond forming reactions: Bamford-Steve                           | ens reaction, |  |  |  |  |
|         | Shapiro reaction, Julia olefination and Peterson olefination.                         |               |  |  |  |  |
| 6.2.    | Ring Formation Reactions: Pauson-Khand reaction, Bergman cyc                          | clisation and |  |  |  |  |
|         | Nazerov cyclisation, Tiffeneau-Demjanov rearrangement.                                |               |  |  |  |  |
| 6.3.    | Multicomponent Reactions: Biginelli synthesis; multicompone                           | nt reactions  |  |  |  |  |
|         | using alkyl isocyanides-Passerini and Ugi-4-component synthesi                        | s.            |  |  |  |  |
| 6.4.    | Olefin metathesis using Grubb's catalyst.                                             |               |  |  |  |  |

6.5. Other important synthetic reactions: Mukaiyama esterification, Mitsunobu reaction and Baylis Hillman reaction.

# **MODE OF TRANSACTION**

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

# MODE OF ASSESSMENT Internal Examination 2 Weightage a. Internal Examination 2 Weightage b. Assignments and Exercises: 3 Weightage c. Seminar/ Viva Voce: 3 Weightage d. Attendance: 3 Weightage Duration 3 Hours, No of Questions: 23 PATTERN OF QUESTION PAPER

| Division  | Туре        | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |
|-----------|-------------|------------------------------|---------------------------------------|------------------------------------|--------------------|
| Section A | Short       | 12                           | 8                                     | 1                                  | 8                  |
| Section B | Short Essay | 7                            | 4                                     | 3                                  | 12                 |

| Section C | Essay | 4 | 2 | 5     | 10 |
|-----------|-------|---|---|-------|----|
|           |       |   |   | Total | 30 |

| MODULE WISE WEIGHTAGE DISTRIBUTION         |      |  |  |
|--------------------------------------------|------|--|--|
| Module                                     | Mark |  |  |
| Unit 1: Oxidations                         | 8    |  |  |
| Unit 2: Reductions                         | 9    |  |  |
| Unit 3: Synthetic Reagents                 | 9    |  |  |
| Unit 4: Chemistry of Polymers              | 9    |  |  |
| Unit 5: Heterocyclic chemistry             | 9    |  |  |
| Unit 6: New reactions in organic synthesis | 9    |  |  |
| Unit 1: Oxidations                         | 8    |  |  |
| Unit 2: Reductions                         | 9    |  |  |

- 1. M. B. Smith, Organic Synthesis, 3/e, Academic Press, 2011.
- R. O. C. Norman and J. M. Coxon, Principles of Organic Synthesis, 3/e, CRC Press, 1998.
- W. Carruthers and I. Coldham, Modern Methods of Organic Synthesis, 4/e, Cambridge University Press.
- R. R. Carey and R. J. Sundburg, Advanced Organic Chemistry, Part B, 5/e, Springer, 2007.
- M. B. Smith, J. March, March's Advanced Organic Chemistry, 6/e, John Wiley & Sons, 2007.
- J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, 2/e, Oxford University Press, 2012.
- 7. J. J. Li, Name Reactions, 4/e, Springer, 2009.
- V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special Techniques, 2/e, Narosa Publishing House, 2006.
- 9. G. Odiyan, Principles of Polymerisation, 4/e, Wiley, 2004.
- 10. V.R. Gowariker and Others, Polymer Science, Wiley Eastern Ltd.

- 11. I.L. Finar, Organic Chemistry, Vol. II, 5/e, ELBS, 1975.
- 12. J. A. Joules and K. Mills, Heterocyclic Chemistry, 4/e, OUP, 2004.
- 13. T. L. Gilchrist, Heterocyclic Chemistry, 3/e, Pearson, 1997.
- T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3/e Addison-Wesley, 1998.
- 15. F. Vogtle, Supramolecular Chemistry, John Wiley & Sons, Chichester, 1991.
- 16. J.M.Lehn, Supramolecular Chemistry, VCH.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER III

| COURSE CODE –MCH3E01<br>SYNTHETIC ORGANIC CHEMISTRY (ELECTIVE) |            |                     |    |    |  |  |
|----------------------------------------------------------------|------------|---------------------|----|----|--|--|
| Credit                                                         | Hours/week |                     |    |    |  |  |
|                                                                |            | Internal External T |    |    |  |  |
| 4                                                              | 3          | 5                   | 30 | 35 |  |  |

# **Course Outcomes**

| CO No. | Expected Course Outcome         Upon completion of this course, students will be able to;       | Learning<br>Domain | PSO<br>No      |
|--------|-------------------------------------------------------------------------------------------------|--------------------|----------------|
| CO1    | <i>Identify</i> various reagents for oxidation and reduction in organic chemistry               | Remember           | PSO 1          |
| CO2    | <i>Demonstrate</i> the synthetic utility of various reagents organic conversions                | Understand         | PSO 2<br>PSO6  |
| CO3    | <i>Solve</i> various problems on organic conversions applying various reagents                  | Apply              | PSO 8          |
| CO4    | <i>Summarize</i> the key steps in the multistep organic synthesis.                              | Understand         | PSO 2          |
| CO5    | <i>Compare</i> the use of different palladium catalyzed reactions in organic synthesis          | Analyse            | PSO 2<br>PSO 3 |
| CO6    | <i>Apply</i> the concepts of retrosynthetic analysis in synthetic planning of organic compounds | Apply              | PSO<br>11      |
| CO7    | <i>Choose</i> the correct reagents for the specific transformations                             | Create             | PSO 9<br>PSO10 |
| CO8    | <i>Summarize</i> classification, structure and synthesis of natural products.                   | Understand         | PSO2           |

|                                                                               | <b>Reagents for Oxidation and Reduction</b>                                    | 8 Hours       |  |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------|--|--|
| 1.1. Reagents for oxidation and reduction: Oxone, IBX, PCC, osmium tetroxide, |                                                                                |               |  |  |
|                                                                               | ruthenium tetroxide, selenium dioxide, molecular oxygen (singlet and triplet), |               |  |  |
|                                                                               | peracids, hydrogen peroxide, aluminum isopropoxide, periodie                   | c acid, lead  |  |  |
|                                                                               | tetraacetate.                                                                  |               |  |  |
| 1.2.                                                                          | Wacker oxidation, TEMPO oxidation, Swern oxidation                             |               |  |  |
| 1.3.                                                                          | Woodward and Prevost hydroxylation, Sharpless asymmetric epo                   | xidation.     |  |  |
| 1.4.                                                                          | Catalytic hydrogenations (heterogeneous and homogeneous), me                   | tal hydrides, |  |  |
|                                                                               | Birch reduction, hydrazine and diimide reduction.                              |               |  |  |
| Unit 2:                                                                       | Organometallic and Organo-nonmetallic Reagents                                 | 8 Hours       |  |  |
| 2.1.                                                                          | Synthetic applications of organometallic and organo-nonmetallic                | reagents:     |  |  |
| 2.2.                                                                          | Reagents based on chromium, aluminium, nickel, palladium, silico               | on, and born, |  |  |
|                                                                               | Gilman reagent, phase transfer catalysts, hydroboration reaction               | ns, synthetic |  |  |
|                                                                               | applications of alkylboranes. Tri -n-butyl tin hydride, Benzene                | Tricarbonyl   |  |  |
|                                                                               | Chromium                                                                       |               |  |  |
| Unit 3:                                                                       | Coupling Reactions                                                             | 8 Hours       |  |  |
| 3.1.                                                                          | Coupling Reactions: PalladiumCatalysts for C-N and C-O bond f                  | ormation,     |  |  |
| 3.2.                                                                          | Palladium catalyzed amine arylation (Mechanism and Synthetic a                 | pplications). |  |  |
| 3.3.                                                                          | Sonogashira cross coupling reaction (Mechanism, Synthetic app                  | plications in |  |  |
|                                                                               | Cyclic peptides)                                                               |               |  |  |
| 3.4.                                                                          | Stille carbonylative cross coupling reaction (Mechanism an                     | nd synthetic  |  |  |
|                                                                               | applications).                                                                 |               |  |  |
| 3.5.                                                                          | Mechanism and synthetic applications of Negishi, Hiyama, Ku                    | mada, Heck    |  |  |
|                                                                               | and Suzuki-Miyaura coupling reactions.                                         |               |  |  |
| Unit 4:                                                                       | Multi step Synthesis                                                           | 8 Hours       |  |  |

- 4.1. Multi step Synthesis: Synthetic analysis and planning, Target selection,
- 4.2. Elements of a Synthesis (Reaction methods, reagents, catalysts, solvents, protective groups for hydroxyl, amino, Carbonyl and carboxylic acids, activating groups, leaving groups synthesis and synthetic equivalents.
- 4.3. Types of selectivities (Chemo, regio, stereo selectivities) synthetic planning illustrated by simple molecules, disconnections and functional group interconversions, uplong reactions and use in synthesis,

# **Unit 5: Retro Synthetic Analysis**

8 Hours

- 5.1. Retrosynthesis: General principles of retrosynthetic analysis- synthons and reagents, donor and acceptor synthons, umpolung, protecting group chemistry and functional group interconversions.
- 5.2. One group and two group C-X and C-C disconnections, functional group transposition.
- 5.3. Examples for a few retrosynthetic analyses- paracetamol from phenol, benzocain from toluene and propranolol from 1-naphthol. longifolene, Corey lactone, Djerassi Prelog lactone.

# **Unit 6: Chemistry of Natural Products**

8 Hours

- 6.1. Chemical classification of natural products. Classification of alkaloids based on ring structure, isolation and general methods of structure elucidation based on degradative reactions.
- 6.2. Structure elucidation of atropine and quinine.
- 6.3. Terpenoids Isolation and classification of terpenoids, structure of steroids classification of steroids.
- 6.4. Woodward synthesis of cholesterol, conversion of cholesterol to testosterone. Total synthesis of Reserpine, Cephalosporin,
- 6.5. General structure of anthocyanins and flavonoids.

# **MODE OF TRANSACTION**

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

|            |                 | MODE O                       | FASSESSMEN                            | Τ                                  |                    |
|------------|-----------------|------------------------------|---------------------------------------|------------------------------------|--------------------|
| Internal A | ssessment (15   | Weightage)                   |                                       |                                    |                    |
| a. Inte    | rnal Examinati  | on                           | 2 Weighta                             | ge                                 |                    |
| 2 In       | ternal Examina  | tions, both s                | hould be conside                      | ered                               |                    |
| b. Ass     | ignments and E  | Exercises:                   | 3 Weighta                             | ge                                 |                    |
| c. Sem     | ninar/ Viva Voc | e:                           | 3 Weighta                             | ge                                 |                    |
| d. Atte    | endance:        |                              | 3 Weighta                             | ge                                 |                    |
| External A | ssessment (30   | Weightages                   | ) Duration                            | 3 Hours, No of Q                   | uestions: 23       |
|            | PA              | TTERN OF                     | <b>QUESTION P</b>                     | APER                               |                    |
| Division   | Туре            | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |
| Section A  | Short           | 12                           | 8                                     | 1                                  | 8                  |
| Section B  | Short Essay     | 7                            | 4                                     | 3                                  | 12                 |
| Section C  | Essay           | 4                            | 2                                     | 5                                  | 10                 |
|            |                 |                              |                                       |                                    |                    |

# MODULE WISE WEIGHTAGE DISTRIBUTION

| Module                                                  | Mark |
|---------------------------------------------------------|------|
| Unit 1: Reagents for Oxidation and Reduction            | 8    |
| Unit 2: Organometallic and Organo non-metallic Reagents | 9    |
| Unit 3: Coupling Reactions                              | 9    |
| Unit 4: Multi step Synthesis                            | 9    |
| Unit 4: Multi step Synthesis                            | 9    |
| Unit 6: Chemistry of Natural Products                   | 9    |

- 1. M. B. Smith, Organic Synthesis, 3/e, Academic Press, 2011.
- 2. S. Warren and P. Wyatt, Organic Synthesis: Strategy and Control, John Wiley
- 3. S. Warren: Organic Synthesis: The Disconnection Approach, John Wiley
- 4. H. O. House: Modern Synthetic Reactions, W. A. Benjamin
- W. Carruthers and I. Coldham, Modern Methods of Organic Synthesis, 4/e, Cambridge University Press.
- T. W. Greene and P. G. M. Wuts: Protecting Groups in Organic Synthesis, 2nd ed., John Wiley
- 7. M B Smith and J. March: Advanced Organic Chemistry-Reactions, Mechanisms and Structure, 6th ed., John Wiley
- 8. T. H. Lowry and K. S. Richardson: Mechanism and Theory in Organic Chemistry, 3rd ed.
- R. R. Carey and R. J. Sundburg, Advanced Organic Chemistry, Part A and B, 5/e, Springer, 2007
- 10. A Pross: Theoretical and Physical Principles of Organic Chemistry, John Wiley
- T.W. Graham Solomons: Fundamentals of Organic Chemistry, 5th ed., John Wiley
- 12. L. Finar: Organic Chemistry Volumes 1 (6th ed.), Pearson
- 13. J. Clayden, N. Green, S. Warren and P. Wothers: Organic Chemistry, 2/e, OUP
- 14. J. J. Li, Name Reactions, 4/e, Springer, 2009.
- 15. N. K. Terret: Combinatorial Chemistry, Oxford University Press, 1998.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER III

| COURSE CODE –MCH3E02<br>COMPUTATIONAL CHEMISTRY (ELECTIVE) |            |           |          |       |  |
|------------------------------------------------------------|------------|-----------|----------|-------|--|
| Credit                                                     | Hours/week | Weightage |          |       |  |
|                                                            |            | Internal  | External | Total |  |
| 4                                                          | 3          | 5         | 30       | 35    |  |

| CO No. | <b>Expected Course Outcome</b><br>Upon completion of this course, students will be able to;                     | Learning<br>Domain | PSO<br>No          |
|--------|-----------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| CO1    | <i>Develop</i> working knowledge of terminology and tools used by quantum chemists                              | Understand         | PSO 8              |
| CO2    | <i>Analyse</i> how quantum mechanics manifests itself in nature and experimental science                        | Evaluate           | PSO 3              |
| CO3    | <i>Summarize</i> advanced quantum mechanical method                                                             | Remember           | PSO 1              |
| CO4    | <i>Understand</i> the basics of computational chemistry                                                         | Understand         | PSO 8              |
| CO5    | <i>Illustrate</i> various tools of computational chemistry                                                      | Analyse            | PSO 2<br>PSO 3     |
| CO6    | <i>Evaluate</i> the types of chemical problems and suitability of advanced quantum chemical methods.            | Evaluate           | PSO 3<br>PSO<br>10 |
| CO7    | <i>Apply</i> computational chemistry as an alternative and complements to the experimental methods in chemistry | Apply              | PSO 7              |

| Unit 1: | Introduction to Computational Chemistry                             | 8 Hours       |
|---------|---------------------------------------------------------------------|---------------|
| 1.1.    | Theory, computation & modeling – Definition of terms; Need of       | approximate   |
|         | methods in quantum mechanics.                                       |               |
| 1.2.    | Computable Quantities - structure, potential energy surfaces as     | nd chemical   |
|         | properties.                                                         |               |
| 1.3.    | Cost & Efficiency – relative CPU time, software & hardware; C       | lassification |
|         | of computational methods                                            |               |
| Unit 2: | Computer Simulation Methods- I                                      | 8 Hours       |
| 2.1.    | Introduction – molecular dynamics and Monte Carlo methods, ca       | alculation of |
|         | simple thermodynamic properties - energy, heat capacity, p          | ressure and   |
|         | temperature, phase space, practical aspects of computer simulation  | ion, periodic |
|         | boundary conditions.                                                |               |
| 2.2.    | Monitoring the equilibration, analyzing the results of a simulation | lation, error |
|         | estimation.                                                         |               |
| Unit 3: | <b>Computer Simulation Methods- II</b>                              | 8 Hours       |
| 3.1.    | Molecular dynamics (MD) method – molecular dynamics u models.       | sing simple   |
| 3.2.    | MD with continuous potentials, finite difference methods, choos     | ing the time  |
|         | step, setting up and running a MD simulation.                       |               |
| 3.3.    | Monte Carlo (MC) method - calculating properties by integration     | , Metropolis  |
|         | method, random number generators, MC simulation of rigid mole       | ecules.       |
| Unit 4: | ab intio Methods in Computational Chemistry                         | 8 Hours       |
| 4.1.    | Review of Hartree - Fock method for atoms, SCF treatment of         | f polyatomic  |
|         | molecules; Closed shell systems - restricted HF calculations        |               |
| 4.2.    | Open shell systems – ROHF and UHF calculations.                     |               |
| 4.3.    | The Roothan - Hall equations, Koopmans theorem, HF limit            | & electron    |
|         | correlation,                                                        |               |

#### 4.4. Introduction to electron correlation (post -HF) methods.

#### **Unit 5: Density Functional Methods**

- 5.1. Introduction to density matrices, N-repeatability & V-representability problems. Hohenberg Kohn theorems, Kohn-Sham orbitals
- 5.2. Exchange correlation functionals Thomas-Fermi-Dirac model, Local density approximation.
- 5.3. Generalized gradient approximation, hybrid functionals; Comparison between DFT and HF methods.

### **Unit 6: Basis Set Approximation**

8 Hours

- 6.1. Hydrogen-like, Slater-type & Gaussian type basis functions
- 6.2. Classification of basis sets minimal, double zeta, triple zeta, split-valence, polarization & diffuse basis sets, even tempered & well tempered basis sets, contracted basis sets
- 6.3. Pople-style basis sets and their nomenclature, correlation consistent basis sets, basis set truncation error, effect of choice of method/ basis set (model chemistries) on CPU time.

### MODE OF TRANSACTION

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

### **MODE OF ASSESSMENT**

# Internal Assessment (15 Weightage)

| a. | Internal Examination          | 2 Weightage          |
|----|-------------------------------|----------------------|
|    | 2 Internal Examinations, both | should be considered |
| b. | Assignments and Exercises:    | 3 Weightage          |

c. Seminar/ Viva Voce: 3 Weightage

d. Attendance: 3 Weightage

### External Assessment (30 Weightages)

Duration 3 Hours, No of Questions: 23

| PATTERN OF QUESTION PAPER |             |                              |                                       |                                    |                    |
|---------------------------|-------------|------------------------------|---------------------------------------|------------------------------------|--------------------|
| Division                  | Туре        | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |
| Section A                 | Short       | 12                           | 8                                     | 1                                  | 8                  |
| Section B                 | Short Essay | 7                            | 4                                     | 3                                  | 12                 |
| Section C                 | Essay       | 4                            | 2                                     | 5                                  | 10                 |
|                           | 30          |                              |                                       |                                    |                    |

| MODULE WISE WEIGHTAGE DISTRIBUTION                             |      |  |  |  |
|----------------------------------------------------------------|------|--|--|--|
| Module                                                         | Mark |  |  |  |
| Unit 1: Introduction to Computational Chemistry                | 8    |  |  |  |
| Unit 2: Computer Simulation Methods- I Error! Reference source | 9    |  |  |  |
| Unit 3: Computer Simulation Methods- II                        | 9    |  |  |  |
| Unit 4: ab intio Methods in Computational Chemistry            | 9    |  |  |  |
| Unit 5: Density Functional Methods                             | 9    |  |  |  |
| Unit 6: Basis Set Approximation                                | 9    |  |  |  |

- C. J. Cramer, Essentials of computational Chemistry: Theories and models, John Wiley & Sons 2002.
- Frank Jensen, Introduction to Computational Chemistry, John Wiley & Sons LTD 1999.
- 3. J. Foresman & Aelieen Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., 2000.
- 4. David Young, Computational Chemistry- A Practical Guide for Applying Techniques to Real- World Problems", Wiley -Interscience, 2001.
- 5. Errol G. Lewars, Computational Chemistry: Introduction to the theory and applications of molecular quantum mechanics, 2 nd edn., Springer 2011.
- 6. I.N. Levine, Quantum Chemistry, 6th Edition, Pearson Education Inc., 2009.
- P.W. Atkins & R.S. Friedman, Molecular quantum mechanics, 4th Edition, Oxford University Press, 2005.
- W. Koch, M.C. Holthausen, "A Chemist's Guide to Density Functional Theory", Wiley-VCH Verlag 2000.

## M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER III

-

| COURSE CODE –MCH3E03<br>GREEN CHEMISTRY AND NANOCHEMISTRY (ELECTIVE) |   |          |                   |    |  |
|----------------------------------------------------------------------|---|----------|-------------------|----|--|
| Credit Hours/week Weightage                                          |   |          |                   |    |  |
|                                                                      |   | Internal | Internal External |    |  |
| 4                                                                    | 3 | 5        | 30                | 35 |  |

# **Course Outcomes**

Г

| CO No. | <b>Expected Course Outcome</b> Upon completion of this course, students will<br>be able to;        | Learning<br>Domain | PSO No         |
|--------|----------------------------------------------------------------------------------------------------|--------------------|----------------|
| CO1    | <i>Describe</i> twelve principles of green chemistry                                               | Remember           | PSO 1<br>PSO 2 |
| CO2    | <i>Design</i> environment friendly chemical reactions based on green chemistry principles          | Create             | PSO9<br>PSO10  |
| CO3    | <i>Demonstrate</i> different types of microwave mediated organic synthesis                         | Understand         | PSO2           |
| CO4    | <i>Choose</i> alternative synthesis, reagents and reaction conditions for different applications   | Apply              | PSO9<br>PSO11  |
| CO5    | <i>Demonstrate</i> physicochemical methods for the synthesis of diverse types of nanomaterials     | Understand         | PSO2           |
| CO6    | <i>Explain</i> working principles and analysis of nanomaterials based on different instruments     | Create             | PSO4<br>PSO 11 |
| CO7    | <i>Compare</i> different microscopic techniques                                                    | Evaluate           | PSO6           |
| CO8    | <i>Distinguish</i> carbon nanostructures in terms of structural, optical and electrical properties | Analyse            | PSO6           |
| CO9    | <i>Design</i> new techniques to prepare various nanomaterials for environmental applications       | Create             | PSO10<br>PS011 |

| Unit 1: | Introduction to green chemistry                                                  | 8 Hours        |
|---------|----------------------------------------------------------------------------------|----------------|
| 1.1.    | Green chemistry-relevance and goals,                                             |                |
| 1.2.    | Anastas' twelve principles of green chemistry                                    |                |
| 1.3.    | Tools of green chemistry: alternative starting materials, reagent                | ts, catalysts, |
|         | solvents and processes with suitable examples.                                   |                |
| Unit 2: | Microwave mediated organic synthesis (MAOS)                                      | Hours          |
| 2.1.    | Microwave activation –advantage of microwave exposure – speci<br>microwave       | fic effects of |
| 2.2.    | Neat reactions - solid supports reactions- Functional group transf               | formations –   |
|         | condensations reactions- oxidations – reductions reactions – multi<br>reactions. | -component     |
| Unit 3: | Alternative synthesis, reagents and reaction conditions                          | 8 Hours        |
| 3.1.    | Introduction – synthesis of ionic liquids – physical properties – ap             | plications in  |
|         | alkylation – hydroformylations – expoxidations                                   |                |
| 3.2.    | Synthesis of ethers - Friedel-craft reactions - Diels-Alder                      | reactions –    |
|         | Knoevengal condensations – Wittig reactions                                      |                |
| 3.3.    | Phase transfer catalyst - Synthesis – applications.                              |                |
| 3.4.    | Photochemical alternative to Friedel-crafts reactions                            |                |
| 3.5.    | Dimethyl carbonate as a methylating agent                                        |                |
| 3.6.    | The design and applications of green oxidants                                    |                |
| 3.7.    | Super critical carbon dioxide for synthetic chemistry.                           |                |
| Unit 4: | Nanomaterials – An Introduction & Synthetic Methods                              | 8 Hours        |
| 4.1.    | Definition of nano dimensional materials - Historical mileston                   | es - unique    |
|         | properties due to nanosize,Quantum dots.                                         |                |
| 4.2.    | Classification of Nanomaterials                                                  |                |
| 4.3.    | General methods of synthesis of nanomaterials - Hydrotherma                      | al synthesis,  |
|         | Solvothermal synthesis, Microwave irradiation, sol - gel and l                   | Precipitation  |
|         | technologies, Combustion Flame-Chemical Vapor Condensation                       | Process, gas   |

Phase Condensation Synthesis, Reverse Micelle Synthesis, Polymer – Mediated Synthesis, Protein Microtube – Mediated Synthesis Synthesis of Nanomaterials using microorganisms and other biological agents, Sonochemical Synthesis, Hydrodynamic Cavitation.

4.4. Inorganic nanomaterials – Typical examples –nano TiO<sub>2</sub> / ZnO/CdO/CdS.

4.5. Organic nanomaterials - examples - Rotaxanes and Catenanes

Unit 5: Techniques for Characterisation of nanoscale materials 8 Hours

- 5.1. Principles of Atomic force microscopy (AFM)
- 5.2. Transmission electron microscopy (TEM)
- 5.3. Resolution and scanning transition electron microscopy (STEM)
- 5.4. Scanning Tunneling Microscopy (STM)
- 5.5. Scanning nearfield optical microscopy (SNOM) Scanning ion conductance microscope, scanning thermal microscope, scanning probe microscopes and surface plasmon spectroscopy.

### Unit 6: Carbon Clusters and Nanostructures

**8** Hours

- 6.1. Nature of carbon bond new carbon structures Carbon clusters: Discovery of C60 - Alkali doped C60 -Superconductivity in C60 - Larger and smaller fullerenes.
- 6.2. Carbon nanotubes: Synthesis Single walled carbon nanotubes Structure and characterization Mechanism of formation Chemically modified carbon nanotubes Doping Functionalizing nanotubes Application of carbon nanotubes.
- 6.3. Nanowires Synthetic strategies Gas phase and solution phase growth Growth control Properties.

## **MODE OF TRANSACTION**

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

### **MODE OF ASSESSMENT**

#### Internal Assessment (15 Weightage)

- a. Internal Examination 2 Weightage
   2 Internal Examinations, both should be considered
- b. Assignments and Exercises: 3 Weightage
- c. Seminar/ Viva Voce: 3 Weightage
- d. Attendance:

**External Assessment (30 Weightages)** Duration 3 Hours, No of Questions: 23

#### PATTERN OF QUESTION PAPER

3 Weightage

| Division  | Туре        | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |
|-----------|-------------|------------------------------|---------------------------------------|------------------------------------|--------------------|
| Section A | Short       | 12                           | 8                                     | 1                                  | 8                  |
| Section B | Short Essay | 7                            | 4                                     | 3                                  | 12                 |
| Section C | Essay       | 4                            | 2                                     | 5                                  | 10                 |
|           |             |                              |                                       | Total                              | 30                 |

| MODULE WISE WEIGHTAGE DISTRIBUTION                  |      |  |  |
|-----------------------------------------------------|------|--|--|
| Module                                              | Mark |  |  |
| Unit I: Introduction to green chemistry             | 8    |  |  |
| Unit-2: Microwave mediated organic synthesis (MAOS) | 9    |  |  |

| Unit 3: Alternative synthesis, reagents and reaction conditions | 9 |
|-----------------------------------------------------------------|---|
| Unit 4: Nanomaterials – An Introduction & Synthetic Methods     | 9 |
| Unit 5: Techniques for Characterisation of nanoscale materials  | 9 |
| Unit 6: Carbon Clusters and Nanostructures                      | 9 |

- V. K. Ahluwalia, Green Chemistry Environmentally benign reactions, Ane Books India (Publisher), (2006).
- V. K. Ahluwalia, Green Chemistry: A Textbook, Narosa Publishing House, 2013.
- Green Chemistry Designing Chemistry for the Environment edited by Paul T. Anastas & Tracy C. Williamson. Second Edition, (1998).
- 4. Green Chemistry Frontiers in benign chemical synthesis and processes- edited by Paul T. Anastas & Tracy C. Williamson. Oxford University Press, (1998).
- Green Chemistry Environment friendly alternatives- edited by Rashmi Sanghi & M. M. Srivastava, Narora Publishing House, (2003).
- C.N.R. Rao, A. Muller, A.K. Cheetam (Eds), The Chemistry of Nanomaterials, Vol.1, 2, Wiley –VCH, Weinheim, 2004.
- C.P. Poole, Jr: F.J. Owens, Introduction to Nanotechnology Wiley Interscience, New Jersey, 2003
- 8. Kenneth J. Klabunde (Ed), Nanoscale materials in Chemistry, Wiley-Interscience, New York, 2001.
- 9. T. Pradeep, Nano: The Essentials in understanding nanoscience and nanotechnology, Tata McGraw Hill, New Delhi, 2007.
- H. Fujita (Ed.), Micromachines as tools in nanotechnology, Springer- Verlag, Berlin, 2003.
- Bengt Nolting, Methods in modern biophysics, Springer-Verlarg, Berlin, First Indian Reprint, 2004. (Pages 102-146 for Unit II and 147 – 163 for Unit V)
- 12. H. Gleiter, Nanostructured Materials: Basic Concepts, Microstructure and Properties
- 13. W. Kain and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John-Wiley R Sons, New York.

- T. Tang and p. Sheng (Eds), Nano Science and Technology Novel Structures and Phenomena, Taylor & Francis, New York, 2004.
- 15. A Nabok, Organic and Inorganic Nanostructures, Artech House, Boston, 2005.
- Edward A. Rietman, Molecular engineering of Nanosystems, Springer- Verlag, New York, 2001.
- 17. Home page of Prof. Ned Seeman http://seemanlab4.chem.nyu.edu/
- 18. Nano letters http://pubs.acs.org/journals/nalefd/index.html
- 19. Nanotation http://www.acsnanotation.org/

## M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER IV

| COURSE CODE –MCH4C12<br>INSTRUMENTAL METHODS OF ANALYSIS |            |           |          |       |  |
|----------------------------------------------------------|------------|-----------|----------|-------|--|
| Credit                                                   | Hours/week | Weightage |          |       |  |
|                                                          |            | Internal  | External | Total |  |
| 4                                                        | 4          | 5         | 30       | 35    |  |

| CO No. | CO No. Expected Course Outcome Upon completion of this course, students will be able to; |          | PSO No          |
|--------|------------------------------------------------------------------------------------------|----------|-----------------|
| CO1    | <i>Identify</i> types of errors.                                                         | Remember | PSO 1<br>PSO 2  |
| CO2    | <i>Compare</i> analytical methods                                                        | Evaluate | PSO 3           |
| CO3    | <i>Summarize</i> mechanism of precipitation Understan                                    |          | PSO 8           |
| CO4    | Illustrate various electrodes Analyse                                                    |          | PSO 2<br>PSO 3  |
| CO5    | <i>Distinguish</i> Emission and absorption analysis instruments                          | Analyse  | PSO 3           |
| CO6    | <i>Classify</i> different polarographic techniques Unders                                |          | PSO 1           |
| CO7    | <i>Distinguish</i> different thermal analysis instruments                                | Analyse  | PSO 3           |
| CO8    | 08 <i>Judge</i> choice of suitable detectors.                                            |          | PSO 3<br>PSO 10 |
| CO9    | <i>Differentiate</i> types of chromatographic techniques                                 | Analyze  | PSO 6           |
| CO10   | <i>Compare</i> different microscopic techniques                                          | Evaluate | PSO 3           |

| r       |                                                                                                                                                          | ,                       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Unit 1: | Errors in Chemical Analysis                                                                                                                              | 8 Hours                 |
| 1.1.    | Treatment of analytical data, accuracy and precision, Absolute errors                                                                                    | and relative            |
| 1.2.    | Classification and minimization of errors, significant figures,                                                                                          |                         |
| 1.3.    | Statistical treatment- mean and standard deviation, variance,                                                                                            | confidence              |
|         | limits, student-t and f tests, detection of gross errors, rejection of test.                                                                             | of a result-Q           |
| 1.4.    | Least square method, linear regression; covariance and correlation                                                                                       | n coefficient           |
| Unit 2: | Conventional Analytical Procedures                                                                                                                       | 8 Hours                 |
| 2.1.    | Gravimetry: solubility product and properties of precipitates                                                                                            | s-nucleation,           |
|         | growth and aging, co- precipitation and post precipitation, drying                                                                                       | and ignition.           |
|         | Inorganic precipitating agents: NH <sub>3</sub> , H <sub>2</sub> S, H <sub>2</sub> SO <sub>4</sub> , (NH <sub>4</sub> ) <sub>2</sub> MoO <sub>4</sub> ar | nd NH <sub>4</sub> SCN. |
| 2.2.    | Organic precipitating agents: oxine, cupron, cupferron, 1-nitros                                                                                         | o-lnaphthol,            |
|         | dithiocarbamates, Acid-Base and precipitation titrations:                                                                                                | theory of               |
|         | neutralisation titrations, indicators for acid/base titrations, titration                                                                                | on curves of            |
|         | strong acid, strong base, weak acid, weak base and polyprotic a                                                                                          | icids. Buffer           |
|         | solutions.                                                                                                                                               |                         |
| 2.3.    | Titrations in nonaqueous media. Different solvents and their set                                                                                         | lection for a           |
|         | titration. Indicators for non-aqueous titrations                                                                                                         |                         |
| 2.4.    | Redox titrations: Permanganometry, dichcrometry, iodometry                                                                                               | , cerimetry.            |
|         | Variation of potential during a redox titration, formal potential du                                                                                     | ring a redox            |
|         | titration, Redox indicators.                                                                                                                             |                         |
| 2.5.    | Precipitation titrations, adsorption indicators                                                                                                          |                         |
| 2.6.    | Complexometric titrations: Types of EDTA titrations (di                                                                                                  | irect, back,            |
|         | replacement, alkalimetric and exchange reactions), masking and                                                                                           | l demasking             |
|         | agents, selective demasking, metal ion indicators - murexide,                                                                                            | eriochrome              |
|         | black T, Patton and Reeder's indicators, bromopyrogallol red, xyl                                                                                        | enol orange,            |
|         | variamine blue.                                                                                                                                          |                         |
| Unit 3: | Electro Analytical Methods- I                                                                                                                            | 8 Hours                 |

- 3.1. Potentiometry: techniques based on potential measurements, direct potentiometric systems, different types of indicator electrodes, limitations of glass electrode, applications in pH measurements, modern modifications, other types of ion selective electrodes, solid, liquid, gas sensing and specific types of electrodes, biomembrane, biological and biocatalytic electrodes as biosensors, importance of selectivity coefficients.
- 3.2. Polarography micro electrode and their specialities, potential and current variations at the micro electrode systems, conventional techniques for concentration determination, limitations of detection at lower concentrations,
- 3.3. Techniques of improving detection limit-rapid scan, ac, pulse, differential pulse square wave polarographic techniques.
- 3.4. Applications of polarography.

### **Unit 4: Electro Analytical Methods II**

8 Hours

8 Hours

- 4.1. Amperometry: biamperometry, amperometric titrations.
- 4.2. Coulometry-primary and secondary coulometry, advantages of coulometric titrations, applications. Principle of chronopotentiometry.
- 4.3. Anodic stripping voltammetry-different types of electrodes and improvements of lower detection limits. Voltammetric sensors.
- 4.4. Organic polarography.

### Unit 5: Optical Methods - I

- 5.1. Fundamental laws of spectrophotometry, nephelometry and turbidometry and fluorimetry.
- 5.2. UV- visible and IR spectrophotometry instrumentation, single and double beam instruments, Spectrophotometric titrations.
- 5.3. Atomic emission spectrometry excitation sources (flame, AC and DC arc), spark, inductively coupled plasma, glue discharge, laser microprobes, flame structure, instrumentation, and qualitative and quantitative analysis.
- 5.4. Atomic absorption spectrometry: sample atomization techniques, instrumentation, interferences, background correction, and analytical applications.

| Unit 6: | Optical Methods - II                                                                | 8 Hours       |
|---------|-------------------------------------------------------------------------------------|---------------|
| 6.1.    | Theory, instrumentation, and applications of: - Atomic spectrometry                 | fluorescence  |
| 6.2.    | X-ray methods, X-ray absorption and X-ray diffraction, p spectroscopy, Auger, ESCA. | hotoelectron  |
| 6.3.    | SEM, TEM, AFM.                                                                      |               |
| Unit 7: | Thermal Methods                                                                     | 8 Hours       |
| 7.1.    | Thermogravimetry (TG), Differential Thermal Analysis                                | (DTA) and     |
|         | Differential Scanning Calorimetry (DSC)                                             |               |
| 7.2.    | Thermomechanical Analysis (TMA), Dynamic Mechanical Analysis                        | ysis (DMA),   |
|         | and their instrumentation. Thermometric Titrations.                                 |               |
| Unit 8: | Chromatography                                                                      | 8 Hours       |
| 8.1.    | Chromatography-classification-column-paper and thin layer chro                      | matography.   |
|         | HPLC-outline study of instrument modules. Ion – exchange chron                      | matography-   |
|         | Theory.                                                                             |               |
| 8.2.    | Important applications of chromatographic techniques. Gel                           | Permeation    |
|         | Chromatography.                                                                     |               |
| 8.3.    | Gas chromatography – basic instrumental set up-carriers, colum                      | ns, detectors |
|         | and comparative study of TCD, FID, ECD and NPD. Qua                                 | litative and  |
|         | quantitative studies using GC                                                       |               |
| 8.4.    | Preparation of GC columns, selection of stationary phases of                        | f GLC, Gas    |
|         | ,, primete es                                                                       |               |
|         | adsorption chromatography, applications, CHN analysis by GC                         | ,             |

#### **MODE OF TRANSACTION**

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

### **MODE OF ASSESSMENT**

#### Internal Assessment (15 Weightage)

- a. Internal Examination 2 Weightage
   2 Internal Examinations, both should be considered
- b. Assignments and Exercises: 3 Weightage
- c. Seminar/ Viva Voce: 3 Weightage
- d. Attendance:

**External Assessment (30 Weightages)** Duration 3 Hours, No of Questions: 23

3 Weightage

### PATTERN OF QUESTION PAPER

| Division  | Туре        | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |
|-----------|-------------|------------------------------|---------------------------------------|------------------------------------|--------------------|
| Section A | Short       | 12                           | 8                                     | 1                                  | 8                  |
| Section B | Short Essay | 7                            | 4                                     | 3                                  | 12                 |
| Section C | Essay       | 4                            | 2                                     | 5                                  | 10                 |
|           |             |                              |                                       | Total                              | 30                 |

| MODULE WISE WEIGHTAGE DISTRIBUTION         |      |  |
|--------------------------------------------|------|--|
| Module                                     | Mark |  |
| Unit 1: Errors in Chemical Analysis        | 6    |  |
| Unit 2: Conventional Analytical Procedures | 6    |  |

| Unit 3: Electro Analytical Methods- I | 6 |
|---------------------------------------|---|
| Unit 4: Electro Analytical Methods II | 7 |
| Unit 5: Optical Methods - I           | 7 |
| Unit 6: Optical Methods - II          | 7 |
| Unit 7: Thermal Methods               | 7 |
| Unit 8: Chromatography                | 7 |

- 1. J.M. Mermet, M. Otto, R. Kellner, Analytical Chemistry, Wiley-VCH, 2004.
- D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Fundamentals of Analytical Chemistry, 9th Edn., Cengage Learning., 2014.
- 3. J.G. Dick, Analytical Chemistry, R.E. Krieger Pub., 1978, 50
- 4. J.H. Kennedy, Analytical Chemistry: Principles, Saunders College Pub., 1990.
- G.H. Jeffery, J. Bassett, J. Mendham, R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, 5th Edn., John Wiley& sons,1989.
- C.L. Wilson, D.W. Wilson, Comprehensive Analytical Chemistry, Elsevier, 1982.
- 7. G.D. Christian, J.E. O'Reilly, Instrumental Analysis, Allyn & Bacon, 1986.
- 8. R.A. Day, A.L. Underwood, Quantitative Analysis, Prentice Hall, 1967.
- 9. A.I. Vogel, A Textbook of Practical Organic Chemistry, 5/e Pearson, 1989.
- 10. H.A. Laitinen, W.E. Harris, Chemical Analysis, McGraw Hill, 1975.
- V.K. Ahluwalia, Green Chemistry: Environmentally Benign Reactions, CRC, 2008.
- F.W. Fifield, D. Kealey, Principles and Practice of Analytical Chemistry, Blackwell Science, 2000.
- 13. G.Gringauz, Introduction to Medical Chemistry, Wiley-VCH, 1997.
- 14. Harkishan Singh and V.K.Kapoor, Medicinal and Pharmaceutical Chemistry, Vallabh

| SEMESTER III & IV                                                          |            |              |    |    |  |
|----------------------------------------------------------------------------|------------|--------------|----|----|--|
| COURSE CODE –MCH3L07 & MCH4L10<br>INORGANIC CHEMISTRY PRACTICALS– III & IV |            |              |    |    |  |
| Credit                                                                     | Hours/week | ek Weightage |    |    |  |
| Internal External Total                                                    |            |              |    |    |  |
| 3                                                                          | 4*         | 10           | 30 | 40 |  |

### M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER III & IV

\* 4 hours/week in semester III and 3 hours/week in semester IV

| CO. No | Expected Course OutcomeUpon completion of this course, students will<br>be able to; | Learning<br>Domain | PSO No.                           |
|--------|-------------------------------------------------------------------------------------|--------------------|-----------------------------------|
| CO1    | <i>Recognize</i> methods to separate different ions                                 | Remember           | PSO 1<br>PSO 2                    |
| CO2    | <i>Compare</i> different separation methods and chose the best                      | Evaluate           | PSO 3<br>PSO 4<br>PSO 10          |
| CO3    | <i>Develop</i> quantitative skills                                                  | Analyse            | PSO 3<br>PSO 5<br>PSO 6<br>PSO 11 |
| CO4    | <i>Determine</i> the quantity of different ions in a mixture                        | Evaluate           | PSO 4<br>PSO 10                   |
| CO5    | <i>Explain</i> choice of solvents for separation                                    | Apply              | PSO 3<br>PSO 10                   |
| CO6    | <i>Prepare</i> inorganic complexes                                                  | Apply              | PSO 4<br>PSO 10<br>PSO 11         |
| CO7    | Assess Purity and yield of synthesised complexes                                    | Evaluate           | PSO 2<br>PSO 11                   |

| Experiment                                                                                                                                                                                                                                                                                                            | 112 Hours                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Unit 1: Estimation of ions in mixture                                                                                                                                                                                                                                                                                 |                                                      |
| 1.1. Estimation involving quantitative separation of suitable binary<br>ions in solution (Cu <sup>2+</sup> , Ni <sup>2+</sup> , Zn <sup>2+</sup> , Fe <sup>2+</sup> , Ca <sup>2+</sup> , Mg <sup>2+</sup> , Ba <sup>2+</sup> and<br>volumetric colorimetric or gravimetric methods only one of the<br>to be estimated | $1 \operatorname{Cr}_2 \operatorname{O}_7^{2-}$ ) by |
| Unit 2: Colorimetric Estimations                                                                                                                                                                                                                                                                                      |                                                      |
| 2.1. Colorimetric estimations of Ni, Cu, Fe and Mo, after separation ions in solution by solvent extraction. (Minimum two experiment                                                                                                                                                                                  |                                                      |
| Unit 3: Ion Exchange Methods                                                                                                                                                                                                                                                                                          |                                                      |
| 3.1. Ion- exchange separation and estimation of binary mixtures (Co<br><sup>2+</sup> and Mg <sup>2+</sup> . Hardness of water).                                                                                                                                                                                       | <sup>2+</sup> & Ni <sup>2+</sup> , Zn                |
| Unit 4: Preparation of Inorganic Complexes (5 Nos)                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                       |                                                      |

### **Mode of Transaction**

**Demonstrations:** Helps to illustrate and consolidate theoretical principles outlined in the course.

**Experimentation:** This involves learning by doing or hands on experience by applying chemical principles.

**Observation:** It involves noticing or perceiving the course of the experiment or measurement by equipment and acquisition of information from the primary source:

| Interr | nal Assessment (10 Weightage)       |                |  |
|--------|-------------------------------------|----------------|--|
| f.     | Attendance:                         | 2 weightage    |  |
| g.     | Lab skill/quality of their results: | 2 weightage    |  |
| h.     | Model practical test:               | 2 weightage    |  |
|        | (Best one, out of two model exams   | is considered) |  |
| i.     | Record:                             | 2 weightage    |  |
| į.     | Viva Voce:                          | 2 weightage    |  |

SEE will be at the end of the fourth semester.

- 1. Vogel's Textbook of Qualitative Inorganic Analysis.
- 2. IM. Kolthoff and E. A. Sanderson, Quantitative Chemical Analysis.
- 3. D. A. Adams and J. B. Rayner, Advanced Practical Inorganic Chemistry.
- 4. W. G. Palmer, Experimental Inorganic Chemistry.
- 5. G. Brauer, Handbook of Preparative Inorganic Chemistry.

|                                                                          | SEMESTER III & IV |    |           |    |  |
|--------------------------------------------------------------------------|-------------------|----|-----------|----|--|
| COURSE CODE –MCH3L08 & MCH4L11<br>ORGANIC CHEMISTRY PRACTICALS– III & IV |                   |    |           |    |  |
| Credit                                                                   | Hours/week        |    | Weightage |    |  |
| Internal External Total                                                  |                   |    |           |    |  |
| 3                                                                        | 4*                | 10 | 30        | 40 |  |

### M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER III & IV

\* 4 hours/week in semester III and 3 hours/week in semester IV

| CO No. | Il be able to;                                                                                                           |          | PSO No.                  |
|--------|--------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|
| CO1    | <i>Recognize</i> different methods to estimate various organic molecules and drugs                                       | Remember | PSO 1<br>PSO 2           |
| CO2    | <i>Compare</i> different extraction methods used for separation of natural products                                      | Evaluate | PSO 3<br>PSO 4<br>PSO 10 |
| CO3    | <i>Develop</i> quantitative skills                                                                                       | Analyse  | PSO 5<br>PSO 6<br>PSO 11 |
| CO4    | <i>Determine</i> the quantity of organic compounds present.                                                              | Evaluate | PSO 4<br>PSO 10          |
| CO5    | <i>Develop</i> methods for chromatographic<br>separations of natural products, Food<br>colours, food additives and dyes. | Create   | PSO 10                   |
| CO6    | <i>Identify</i> suitable separations methods for organic compounds                                                       | Analyze  | PSO 5<br>PSO 8           |
| CO7    | Assess Purity drugs and organic compounds                                                                                | Evaluate | PSO 2<br>PSO 11          |

| Experi  | ment                                                                        | 112 Hours        |  |  |  |
|---------|-----------------------------------------------------------------------------|------------------|--|--|--|
| Unit 1: | Unit 1: Quantitative Organic Analysis                                       |                  |  |  |  |
| 1.1.    | Estimation of equivalent weight of acids by Silver Salt method              | l                |  |  |  |
| 1.2.    | Estimation of nitrogen by Kjeldahl method                                   |                  |  |  |  |
| 1.3.    | Determination of Acid value, iodine value and saponification va             | alue of oils and |  |  |  |
|         | fats (at least one each)                                                    |                  |  |  |  |
| 1.4.    | Estimation of reducing sugars, Estimation of amino group, pher              | nolic group and  |  |  |  |
|         | esters.                                                                     |                  |  |  |  |
| 1.5.    | Colourimetric estimations: Vitamins (Ascorbic acid), Drugs                  | – sulpha drug    |  |  |  |
|         | (Sulpha diazine, sulphaguanidine), Antibiotics – Pencillin, Stro            | optomycin.       |  |  |  |
| Unit 2: | Extractions                                                                 |                  |  |  |  |
| 2.1.    | Extraction of Natural products and purification by column cl                | hromatography    |  |  |  |
|         | and TLC – Caffeine from Tea waste, Chlorophill Steroids, Flavonoid (Soxhlet |                  |  |  |  |
|         | extraction), citral from lemon grass (steam distillation).                  |                  |  |  |  |
| 2.2.    | . Casein from milk                                                          |                  |  |  |  |
| Unit 3: | Chromatography                                                              |                  |  |  |  |
| 3.1.    | Food additives and Dyes, Artificial sweeteners: Saccharin                   | e, cyclamates,   |  |  |  |
|         | Dulcin. Flavour adulterants - piperonal, Benzalacetate,                     | ethyl acetate    |  |  |  |
|         | antioxidants: Butylated hydroxytoluene (BHT) Butylated hy                   | ydroxy anisole   |  |  |  |
|         | (BHA), Hydroquinone.                                                        |                  |  |  |  |
| 3.2.    | Food colours: Permitted - Amaranth, Erythrosine, Tatrazine,                 | susnet yellow,   |  |  |  |
|         | Fast green, Brilliant Blue, Nonpermitted colours: Auramin                   | e, Congo red,    |  |  |  |
|         | Malachite green, Metanil yellow, Orange II, Sudan II, Congo r               | ed.              |  |  |  |
| 3.3.    | Amino acids (Protein hydrolysates), Sugars, Terpinoid                       | ds, Alkaloids,   |  |  |  |
|         | Flavonoids, Steroids. Pesticides and herbicides: Oragonochlo                | orine pesticides |  |  |  |
|         | organo phosphates and carbamate pesticides, Herbicides.                     |                  |  |  |  |
| 3.4.    | Plant growth stimulants: Indole acetic acid.                                |                  |  |  |  |

### **Mode of Transaction**

**Demonstrations:** Helps to illustrate and consolidate theoretical principles outlined in the course.

**Experimentation:** This involves learning by doing or hands on experience by applying chemical principles.

**Observation:** It involves noticing or perceiving the course of the experiment or measurement by equipment and acquisition of information from the primary source:

| Mode of Assessment                 |                                     |                |  |
|------------------------------------|-------------------------------------|----------------|--|
| Internal Assessment (10 Weightage) |                                     |                |  |
| k.                                 | Attendance:                         | 2 weightage    |  |
| 1.                                 | Lab skill/quality of their results: | 2 weightage    |  |
| m.                                 | Model practical test:               | 2 weightage    |  |
|                                    | (Best one, out of two model exams   | is considered) |  |
| n.                                 | Record:                             | 2 weightage    |  |
| 0.                                 | Viva Voce:                          | 2 weightage    |  |

SEE will be at the end of the fourth semester.

- 1. B.S. Furnis, A.J. Hannaford, P.W.G. Smith and A.R. Tatchell, Vogel's Textbook of Practical Organic Chemistry, 5/e, Pearson, 1989.
- 2. Beebet, Pharmacuetical Analysis
- 3. E. Hoftmann, Chromatography, Nostrand Reinhold Company, New York, 1975.
- 4. J. Sherma and G. Zwig, TLC and LC analysis of pesticides of international importance, Vol. VI & VII, Academic Press.

- H. Wagner, S. Bladt, E.M. Zgainsti Tram, Th. A. Scott., Plant Drug Analysis, Springer- Verlag, Tokyo, 1984.
- 6. Vishnoi, Practical Organic Chemistry.

## M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER III & IV

| COURSE CODE –MCH3L09 &MCH4L12<br>PHYSICAL CHEMISTRY PRACTICALS– III & IV |            |                                |    |    |  |  |
|--------------------------------------------------------------------------|------------|--------------------------------|----|----|--|--|
| Credit                                                                   | Hours/week | WeightageInternalExternalTotal |    |    |  |  |
|                                                                          |            |                                |    |    |  |  |
| 3                                                                        | 4*         | 10                             | 30 | 40 |  |  |

\* 4 hours/week in semester III and 3 hours/week in semester IV

| CO No | <b>Expected Course Outcome</b><br>Upon completion of this course, students will<br>be able to; | Learning<br>Domain | PSO No.                   |
|-------|------------------------------------------------------------------------------------------------|--------------------|---------------------------|
| CO1   | <i>Recognize</i> methods for studying physical properties of molecules and materials           | Remember           | PSO 1<br>PSO 2            |
| CO2   | <i>Compare</i> the physical properties of molecules and materials                              | Evaluate           | PSO 3<br>PSO 4<br>PSO 10  |
| CO3   | <i>Develop</i> skills for analyzing physical properties of materials                           | Analyse            | PSO 3<br>PSO 6<br>PSO 11  |
| CO4   | <i>Determine</i> the physical parameters                                                       | Evaluate           | PSO 4<br>PSO 10           |
| CO5   | <i>Explain</i> the factors affecting the various physical properties of compounds              | Apply              | PSO 3<br>PSO 10           |
| CO6   | <i>Design</i> experiments for studying physical properties of compound and reactions           | Create             | PSO 9<br>PSO 10<br>PSO 11 |
| C07   | Assess the basic molecular parameters of<br>simple molecules using computational<br>softwares  | Evaluate           | PSO 2<br>PSO 11           |

| Experi  | ment                                                                                                                             | 112 Hours       |
|---------|----------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Unit 1: | : Chemical Kinetics (4experiments)                                                                                               |                 |
| 1.1.    | Determination of specific reaction rate of acid hydrolysis of an acetate or ethyl acetate) and concentration of the given acids. | ester (methyl   |
| 1.2.    | Determination of Arrhenius parameters of acid hydrolysis of an                                                                   | ester           |
| 1.3.    | Determination of specific reaction rate of saponification of ethy                                                                | acetate         |
| 1.4.    | Iodination of acetone in acid medium – Determination of ord with respect of iodine and acetone.                                  | ler of reaction |
| Unit 2: | Adsorption (3 experiments)                                                                                                       |                 |
| 2.1.    | Verification of Langmuir adsorption isotherm – charcoal-acetic                                                                   | acid system.    |
| 2.2.    | Determination of the concentration of a given acetic acid solu                                                                   | tion using the  |
|         | isotherm                                                                                                                         |                 |
| 2.3.    | Verification of Langmuir adsorption isotherm - charcoal-oxalic                                                                   | acid system.    |
| 2.4.    | Determination of the concentration of a given acetic acid solu                                                                   | tion using the  |
|         | isotherm.                                                                                                                        |                 |
| 2.5.    | Determination of surface area of adsorbent                                                                                       |                 |
| Unit 3: | : Phase Equilibria (2 experiments)                                                                                               |                 |
| 3.1.    | Determination of phase diagram of a ternary liquid system(eg<br>acetic acid – water – Benzene – acetic acid –water)              | . chloroform-   |
| 3.2.    | Determination of the composition of a binary liquid mixture (e.g<br>acetic acid, benzene-acetic acid)                            | ., chloroform-  |
| 3.3.    | Determination of mutual miscibility curve of a binary li quid<br>phenol –water) and critical solution temperature(CST).          | l system (e.g., |
| 3.4.    | Effect of impurities (e.g, NaCl, KCl, succinic acid, salicylic aci<br>of water-phenol system                                     | d) on the CST   |
| 3.5.    | Effect of a given impurity (e.g., KCl) on the CST of water –pher<br>determination of the concentration of the given solution     | nol system and  |

**Unit 4:** Cryoscopy – Beckman Thermometer (3 experiments)

- 4.1. Determination of cyroscopic constant of a liquid (water, benzene)
- 4.2. Determination of molecular mass of a solute (urea, glucose, cane sugar, mannitol) by studying the depression in freezing point of a liquid solvent (water, benzene)
- 4.3. Determination of Van't Hoff factor and percentage of dissociation of NaCl.
- 4.4. Study of the reaction 2K1 + Hgl2 ⇒ K2Hgl4 and determination of the concentration of the given KI solution.

Unit 5: Polarimetry (3 experiments)

- 5.1. Determination of specific and molar optical rotations of glucose, fructose and sucrose.
- 5.2. Determination of specific rate of inversion of cane sugar in presence of HCl.
- 5.3. Determination of concentration of HCl

Unit 6: Spectrophotometry (3 experiments)

- 6.1. Determination of equilibrium constants of acid –base indicators.
- 6.2. Simultaneous of determination Mn and Cr in a solution of  $KMnO_4$  and  $K_2Cr_2O_7$
- 6.3. Investigation of complex formation between Fe (III) and thiocyanate

Unit 7: Computational Chemistry Calculations

- 7.1. Single point energy calculations of simple molecules like H<sub>2</sub>O and NH<sub>3</sub> at the HF/3-21G level of theory.
- 7.2. The effect of basis set on the single point energy of  $H_2O$  and  $NH_3$  using the
- 7.3. Hartree-Fock method (3-21G, 6-31G, 6-31+G, 6-31+G\* basis sets can be used).
- 7.4. Geometry optimization of molecules like  $H_2O$ ,  $NH_3$ ,  $HCHO \& C_2H_4$  at the HF/6-31G level of theory.
- 7.5. Computation of dipole and quadrupole moments of HCHO &  $C_2H_4$  at the HF/6-31G level of theory.

- 7.6. Effect of basis set on the computation of H-O-H bond angle in H<sub>2</sub>O using the Hartree-Fock method (3-21G, 6-31G, 6-31+G, 6-31+G\* basis sets can be used).
- 7.7. Computation of the energy of HOMO and LUMO of formaldehyde and ethylene at the HF/6-31G level of theory.
- 7.8. Effect of substituent (F & Cl) on the geometric parameters (like C-C bond length) of ethylene at the HF/6-31G level of theory.
- 7.9. Comparison of stability of cis-planar and trans-planar conformers of H<sub>2</sub>O<sub>2</sub> at the HF/6-31G level of theory.
- 7.10. Comparison of stability of cis- and trans- isomers of difluoroethylene at the HF/6-31G\* level of theory.
- 7.11. Computation of the frequencies of normal modes of vibration of molecules like H<sub>2</sub>O, NH<sub>3</sub> and CO<sub>2</sub> at the HF/6-31+G\* level of theory.
- 7.12. Determination of hydrogen bond strength of H<sub>2</sub>O dimer and H<sub>2</sub>O trimer at the HF/6-31+G\* level of theory.
- 7.13. Determination of hydrogen bond strength of HF dimer and HF trimer at the HF/6-31+G\* level of theory.

#### **Mode of Transaction**

**Demonstrations:** Helps to illustrate and consolidate theoretical principles outlined in the course.

**Experimentation:** This involves learning by doing or hands on experience by applying chemical principles.

**Observation:** It involves noticing or perceiving the course of the experiment or measurement by equipment and acquisition of information from the primary source:

| Mode of Assessment                  |                                                                                                                                                                       |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Internal Assessment (10 Weightage)  |                                                                                                                                                                       |  |  |  |
| Attendance:                         | 2 weightage                                                                                                                                                           |  |  |  |
| Lab skill/quality of their results: | 2 weightage                                                                                                                                                           |  |  |  |
| Model practical test:               | 2 weightage                                                                                                                                                           |  |  |  |
| (Best one, out of two model exams   | is considered)                                                                                                                                                        |  |  |  |
| Record:                             | 2 weightage                                                                                                                                                           |  |  |  |
| Viva Voce:                          | 2 weightage                                                                                                                                                           |  |  |  |
|                                     | al Assessment (10 Weightage)<br>Attendance:<br>Lab skill/quality of their results:<br>Model practical test:<br>( <i>Best one, out of two model exams a</i><br>Record: |  |  |  |

# External Assessment (30 Weightage)

SEE will be at the end of the fourth semester.

- 1. A Finlay and J.A. Kitchener, Practical Physical Chemistry, Longman.
- 2. F. Daniels and J.H. Mathews, Experimental Physical Chemistry, Longman.
- 3. AH. James, Practical Physical Chemistry, J.A. Churchil Ltd., 1961.
- 4. H.H. Willard, L.L. Merit and J.A. Dean, Instrumental Methods of Analysis, 4th Education, Affiliated East-West Press Pvt. Ltd., 1965.
- 5. D.P. Shoemaker and C.W. Garland, Experimental Physical Chemistry, McGraw Hill.
- 6. J.B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, 1989.
- 7. J. Foresman & Aelieen Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., 2000.
- 8. David Young, Computational Chemistry- A Practical Guide for Applying Techniques to Real- World Problems, Wiley-Interscience, 2001.
- 9. http://classic.chem.msu.su/gran/gamess/index.html

## M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER IV

| COURSE CODE –MCH4E04<br>PETROCHEMICALS AND COSMETICS (ELECTIVE) |            |                         |           |  |  |  |
|-----------------------------------------------------------------|------------|-------------------------|-----------|--|--|--|
| Credit                                                          | Hours/week |                         | Weightage |  |  |  |
|                                                                 |            | Internal External Total |           |  |  |  |
| 4                                                               | 4          | 5 30 35                 |           |  |  |  |

| CO No. | <b>Expected Course Outcome</b><br>Upon completion of this course, students will<br>be able to; | Learning<br>Domain | PSO No          |
|--------|------------------------------------------------------------------------------------------------|--------------------|-----------------|
| CO1    | Understand the basics of petroleum refining                                                    | Remember           | PSO 1<br>PSO 2  |
| CO2    | <i>Identify</i> the raw materials obtained from petroleum                                      | Analyse            | PSO3            |
| CO3    | <i>Classify</i> Chemical processing of various hydrocarbons                                    | Remember           | PSO 1<br>PSO 2  |
| CO4    | <i>Understand</i> the processes in industrial organic synthesis                                | Understand         | PSO 1           |
| CO5    | Analyse Physical Properties and Test Methods                                                   | Analyse            | PSO 2<br>PSO 3  |
| CO6    | <i>Evaluate</i> Physical Properties                                                            | Evaluate           | PSO 3<br>PSO 10 |
| CO7    | <i>Understand</i> the basics of distillation of crude oil                                      | Remember           | PSO 1<br>PSO 2  |
| CO8    | <i>Discuss</i> the products of distillation of crude oil                                       | Remember           | PSO 1<br>PSO 2  |

| Unit 1: | Introduction to Petrochemistry                                      | 8 Hours       |  |  |  |
|---------|---------------------------------------------------------------------|---------------|--|--|--|
| 1.1.    | Introduction – Petroleum – Refining of crude oil – Fuels            | for internal  |  |  |  |
|         | combustion engines. Knocking, Octane number. Unleaded petrol.       |               |  |  |  |
| 1.2.    | Diesel Engine and Cetane number. Cracking – Thermal, Catalytic.     | Mechanism     |  |  |  |
|         | of cracking process. Reforming Activation Gasoline. Petrochemic     | cals.         |  |  |  |
| Unit 2: | Hydrocarbons from Petroleum                                         | 8 Hours       |  |  |  |
| 2.1.    | Introduction. Raw materials. Saturated hydrocarbons from natur      | al gas. Uses  |  |  |  |
|         | of saturated hydrocarbons. Unsaturated hydrocarbons - Acetylen      | e, Ethylene,  |  |  |  |
|         | Propylene, Butylenes.                                               |               |  |  |  |
| 2.2.    | Aromatic hydrocarbons - Benzene. Toluene. Xylenes. Chemical p       | rocessing of  |  |  |  |
|         | paraffin hydrocarbons. Chemical processing of ethylene hy           | drocarbons.   |  |  |  |
|         | Chemical processing of acetylene. Chemical processing of aromatic   |               |  |  |  |
|         | hydrocarbons.                                                       |               |  |  |  |
| Unit 3: | Industrial Organic Synthesis                                        | 8 Hours       |  |  |  |
| 3.1.    | Introduction. The raw materials and basic processes.                |               |  |  |  |
| 3.2.    | Chemical process used in industrial organic synthesis. Petr         | ochemicals-   |  |  |  |
|         | Methanol. Important points. Ethanol. Important points.              |               |  |  |  |
| 3.3.    | Rectified spirit from beer. Methylated spirit. Proof spirit. Prepar | ration of the |  |  |  |
|         | absolute alcohol from rectified spirit. Acetaldehyde. Acetic acid.  | Isopropanol.  |  |  |  |
|         | Ethylene glycol. Glycerine. Acetone. Phenol. Formaldehyde           | . Important   |  |  |  |
|         | points. Ethyl acetate. Important points.                            |               |  |  |  |
| Unit 4: | Composition of Petroleum Crude                                      | 8 Hours       |  |  |  |
| 4.1.    | Composition of petroleum crude. Composition of the petroleu         | m products.   |  |  |  |
|         | Isomeric compounds. Classification of petroleum crude. A survey     | of the world  |  |  |  |
|         | crude. Sulphur compounds in petroleum.                              |               |  |  |  |
| 4.2.    | Physical Properties and Test Methods                                |               |  |  |  |
| 4.3.    | Viscosity: Other methods for finding out viscosity. Viscosity of a  | an oil blend. |  |  |  |
|         | Use of the figure for finding out viscosity. Viscosities of hydro   | ocarbons. 2.  |  |  |  |

Density, 3. Surface and interfacial tensions. 4. Refractive Index. 5. Flash and fire points. 6. Cloud and pour points. 7. Aniline point. 8. Diesel index. 9. Cetane number. 10. Octane number and knock characteristics. 11. Distillation curves. (a) ASTM (American Society for Testing Materials) distillation curve. (b). Hempel or semi fractionating distillation curve.

#### **Unit 5: Distillation of Crude Petroleum**

### 8 Hours

- 5.1. Preparation of petroleum for processing. Destruction of petroleum emulsion. Electric desalting plants.
- 5.2. Fundamentals of preliminary distillation. Methods of petroleum distillation. Distillation of crude petroleum. Treatment of the residual liquid processing of liquid fuels such as petroleum and petroleum products.
- 5.3. Petroleum processing equipments. Storage tanks. Rectification columns. Cap tray or bubble tray columns. Heat exchange apparatus. Steam space heaters or boilers. Condensers. Pipe furnaces. Pipelines. Fitting Compressors and pumps.

### **Unit 6: Petroleum Products**

8 Hours

- 6.1. Introduction. Classification of petroleum products. Liquefied hydrocarbons, gases and fuels. Fuel oils or boiler oils. Fuel for Jet engines and gas turbine engines.
- 6.2. Lubricants, products of oil paraffine processing and other petroleum products.
- 6.3. Lubricating and other oils. Paraffins, ceresins, petroleum. Miscellaneous petroleum products.
- 6.4. Products of petrochemical and basic organic synthesis. Dye intermediates. Lacquers. Solvents. Thinners.

### **Unit 7: Purification of Petroleum Products**

**8 Hours** 

- 7.1. Absorptive and adsorptive purification. Sulphuric acid purification. Alkaline purification. Hydrorefining.
- 7.2. Purification in a DC electric field. New methods of purification. De mercaptanisation. Stabilisation.

### **Unit 8: Perfumes and Cosmetics**

**8 Hours** 

- 8.1. Perfumes: Introduction. Esters. Alcohols. Ketones. Ionones. Nitromusks. Aldehydes. Diphenyl compounds. Production of natural perfumes. Flower perfume. Fruit flavours. Artificial flavours.
- 8.2. Cosmetics: Introduction. Toothpaste. Ingradients. Preparation. Recipe for toothpaste. Shampoos. Ingradients. Recipe. Hair dyeing. Materials used. Colour and Curl of Hair. Creams and Lotions. Skin Chemicals. Their ingradients. Preparation and recipe. Lipsticks. Ingradients. Preparation and recipe. Perfumes, Colognes and after shave preparation.
- 8.3. Compounds with flowery and fruity odours used in perfumes with their structures. Compounds with unpleasant odours used to fix delicate odours in perfumes. Deodorants and Antiperspirants.
- 8.4. Cosmetics: Economics and Advertising.

### **MODE OF TRANSACTION**

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

#### **MODE OF ASSESSMENT**

#### Internal Assessment (15 Weightage)

- a. Internal Examination2 Weightage2 Internal Examinations, both should be considered
- b. Assignments and Exercises: 3 Weightage

c. Seminar/ Viva Voce:

d. Attendance:

3 Weightage

3 Weightage

| External A | uestions: 23              |                              |                                       |                                    |                    |  |
|------------|---------------------------|------------------------------|---------------------------------------|------------------------------------|--------------------|--|
|            | PATTERN OF QUESTION PAPER |                              |                                       |                                    |                    |  |
| Division   | Туре                      | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |  |
| Section A  | Short                     | 12                           | 8                                     | 1                                  | 8                  |  |
| Section B  | Short Essay               | 7                            | 4                                     | 3                                  | 12                 |  |
| Section C  | Essay                     | 4                            | 2                                     | 5                                  | 10                 |  |
| Total      |                           |                              |                                       |                                    | 30                 |  |

| MODULE WISE WEIGHTAGE DISTRIBUTION         |      |  |  |
|--------------------------------------------|------|--|--|
| Module                                     | Mark |  |  |
| Unit 1: Introduction to Petrochemistry     | 4    |  |  |
| Unit 2: Hydrocarbons from Petroleum        | 4    |  |  |
| Unit 3: Industrial Organic Synthesis       | 9    |  |  |
| Unit 4: Composition of Petroleum Crude     | 9    |  |  |
| Unit 5: Distillation of Crude Petroleum    | 9    |  |  |
| Unit 6: Petroleum Products                 | 9    |  |  |
| Unit 7: Purification of Petroleum Products | 4    |  |  |
| Unit 8: Perfumes and Cosmetics             | 5    |  |  |

- 1. B. K. Sharma, Industrial Chemistry, Goel Publication, Goa.
- 2. N. K. Sinha, Petroleum Refining and petrochemicals,
- 3. John W. Hill, Chemistry for Changing times, Surjeet Publication
- 4. Uttam Ray Chaudhuri, Fundamentals of Petroleum and Petrochemical Engineering, Boca Raton London New York.

- 5. S ukumar Maiti, "Introduction To Petrochemicals" India Book House Pvt Ltd.
- 6. Gabriella Baki, Kenneth S. Alexander, "Introduction to Cosmetic Formulation and Technology", Wiley.
- 7. Tony Curtis, David Williams, "Introduction to Perfumery", Micelle Press; 2nd edition

## M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER IV

| COURSE CODE –MCH4E05<br>INDUSTRIAL CATALYSIS (ELECTIVE) |            |           |          |       |  |  |
|---------------------------------------------------------|------------|-----------|----------|-------|--|--|
| Credit                                                  | Hours/week | Weightage |          |       |  |  |
|                                                         |            | Internal  | External | Total |  |  |
| 4                                                       | 4          | 5         | 30       | 35    |  |  |

| CO No. | Expected Course OutcomeUpon completion of this course, students will<br>be able to;  | Learning<br>Domain | PSO No         |
|--------|--------------------------------------------------------------------------------------|--------------------|----------------|
| CO1    | Understand adsorption processes                                                      | Remember           | PSO 1<br>PSO 2 |
| CO2    | Distinguish adsorption processes                                                     | Analyse            | PSO3           |
| CO3    | <i>Evaluate</i> surface area of materials                                            | Analyse            | PSO3<br>PSO5   |
| CO4    | <i>Understand</i> various theories of adsorption processes                           | Remember           | PSO 1<br>PSO 2 |
| CO5    | <i>Apply</i> various theories in adsorption to solve problems in kinetics            | Apply              | PSO8           |
| CO6    | Understand industrial importance of catalysts                                        | Remember           | PSO 1<br>PSO 2 |
| CO7    | <i>Solve</i> problems in surface chemistry                                           | Apply              | PSO8           |
| CO8    | <i>Acquire</i> knowledge regarding various synthetic methods for preparing catalysts | Remember           | PSO 1<br>PSO 2 |
| CO9    | <i>Recognize</i> various techniques used for surface analyses                        | Remember           | PSO1<br>PSO11  |

## **COURSE CONTENT**

|         | COURSE CONTENT                                                                                                                                                                                        |              |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit 1: | Introduction To Adsorption Process                                                                                                                                                                    | 8 Hours      |
| 1.1.    | Intermolecular interactions, physisorption – the forces of ad<br>dispersion and repulsive forces – classical electrostatic inter<br>adsorbate-adsorbate interactions, chemisorption, potential energy | eractions –  |
| 1.2.    | Thermodynamics of adsorption – isothermal and adiabatic adsorption – variation of heats of adsorption with coverage                                                                                   | heats of     |
| 1.3.    | Adsorption isotherms, Langmuir, BET and Freundlich,                                                                                                                                                   |              |
| 1.4.    | Kinetics of chemisorption - activated and non-activated chem                                                                                                                                          | isorption –  |
|         | absolute rate theory – electronic theories, hysteresis, and capillaries.                                                                                                                              | shapes of    |
| Unit 2: | Kinetics And Catalysis                                                                                                                                                                                | 8 Hours      |
| 2.1.    | Adsorption and catalysis – adsorption and reaction rate – s                                                                                                                                           | strength of  |
|         | adsorption bond and catalysis – adsorption equilibrium and cataly                                                                                                                                     | ysis,        |
| 2.2.    | Kinetics of heterogeneous catalysis: diffusion steps neglected - un                                                                                                                                   | imolecular   |
|         | reactions – bimolecular reactions – Langmuir-Hinshelwood and E mechanism,                                                                                                                             | Eley-Rideal  |
| 2.3.    | Kinetics of heterogeneous catalysis: diffusion controlling – me                                                                                                                                       | chanism of   |
|         | diffusion – diffusion and reaction in pores – selectivity and                                                                                                                                         |              |
|         | electronic factors in catalysis by metals, electronic factors in c                                                                                                                                    |              |
|         | semiconductors, geometric factors and catalysis.                                                                                                                                                      | analysis oy  |
| Unit 3: | Catalyst - Preparative Methods                                                                                                                                                                        | 8 Hours      |
| 3.1.    | Surface area and porosity measurement – measurement of acidity of                                                                                                                                     | of surfaces; |
|         | Support materials                                                                                                                                                                                     |              |
| 3.2.    | Preparation and structure of supports - surface properties, preparation                                                                                                                               | paration of  |
|         | catalysts – introduction of precursor compound – pre-activation activation process.                                                                                                                   | treatment –  |
| 3.3.    | General methods of synthesis of zeolites, mechanism of nuclear                                                                                                                                        | formation    |
|         | and crystal growth, structures of some selected zeolites - zeolite                                                                                                                                    | s A, X and   |
|         | Y, pentasils – ZSM-5, ZSM-11, shape selective catalysis by zeoli                                                                                                                                      | tes.         |
| 1       |                                                                                                                                                                                                       |              |

#### **Unit 4: Deactivation Of Catalysts**

- 4.1. Deactivation of catalysts, classification of catalyst deactivation processes, poisoning of catalysts, coke formation on catalysts, metal deposition on catalysts, sintering of catalysts,
- 4.2. Regeneration of deactivated catalysts, feasibility of regeneration, description of coke deposit and kinetics of regeneration.

### **Unit 5: Phase Transfer Catalysis**

8 Hours

- 5.1. Basic concepts in phase transfer catalysis phase transfer catalyzed reactions
   basic steps of phase transfer catalysis effect of reaction variables on transfer and intrinsic rates outline of compounds used as phase transfer catalysts.
- 5.2. Use of quaternary salts macrocyclic and macrobicyclic ligands PEG's and related compounds
- 5.3. Use of dual phase transfer catalyst or co-catalyst in phase transfer systems separation and recovery of phase transfer catalysts.
- 5.4. Insoluble phase transfer catalysts.

#### **Unit 6: Biocatalysis**

8 Hours

- 6.1. Enzymes an introduction to enzymes enzymes as proteins
- 6.2. Classification and nomenclature of enzymes
- 6.3. Structure of enzymes how enzymes work effect on reaction rate thermodynamic definitions catalytic power and specificity of enzymes optimization of weak interactions between enzyme and substrate in the transition state binding energy, reaction specificity and catalysis specific catalytic groups contributing to catalysis.
- 6.4. Immobilized biocatalysts definition and classification of immobilized biocatalysts immobilization of coenzymes

**Unit 7: Industrial Catalysis-1** 

8 Hours

- 7.1. Oil based chemistry; catalytic reforming; catalytic cracking; paraffin cracking; naphthenic cracking; aromatic hydrocarbon cracking; isomerization; hydrotreatment; hydrodesulphurization; hydrocracking; steam cracking; hydrocarbons from synthesis gas; Fisher-Tropsch process,
- 7.2. Mobile process for conversion of methanol to gasoline hydrocarbons. Catalysis for environmental protection, removal of pollutants from exhausts, mobile and static sources

## Unit 8: Industrial Catalysis-II

8 Hours

- 8.1. Hydroformylation of olefins, carbonylation of organic substrates, conversion of methanol to acetic acid, synthesis of vinyl acetate and acetic anhydride, palladium catalyzed oxidation of ethylene, acrylonitrile synthesis
- 8.2. Zeigler-Natta catalysts for olefin polymerization.
- 8.3. Propene polymerization with silica supported metallocene/MAO catalysts.

## **MODE OF TRANSACTION**

Face to Face Instruction: This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

## **MODE OF ASSESSMENT**

#### Internal Assessment (15 Weightage)

a. Internal Examination

2 Weightage

2 Internal Examinations, both should be considered

b. Assignments and Exercises:

c. Seminar/ Viva Voce:

d. Attendance:

**External Assessment (30 Weightages)** 

Duration 3 Hours, No of Questions: 23

3 Weightage

3 Weightage

3 Weightage

| PATTERN OF QUESTION PAPER |             |                              |                                       |                                    |                    |  |
|---------------------------|-------------|------------------------------|---------------------------------------|------------------------------------|--------------------|--|
| Division                  | Туре        | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |  |
| Section A                 | Short       | 12                           | 8                                     | 1                                  | 8                  |  |
| Section B                 | Short Essay | 7                            | 4                                     | 3                                  | 12                 |  |
| Section C                 | Essay       | 4                            | 2                                     | 5                                  | 10                 |  |
|                           | 30          |                              |                                       |                                    |                    |  |

| MODULE WISE WEIGHTAGE DISTRIBUTION         |      |  |  |
|--------------------------------------------|------|--|--|
| Module                                     | Mark |  |  |
| Unit 1: Introduction to Adsorption process | 6    |  |  |
| Unit 2: Kinetics and Catalysis             | 6    |  |  |
| Unit 3: Catalyst - Praparative Methods     | 6    |  |  |
| Unit 4: Deactivation of Catalysts          | 7    |  |  |
| Unit 5: Phase Transfer Catalysis           | 7    |  |  |
| Unit 6: Biocatalysis                       | 7    |  |  |
| Unit 7: Industrial Catalysis-1             | 7    |  |  |
| Unit 8: Industrial Catalysis-II            | 7    |  |  |

#### **REFERENCES:**

- 1. A Clark, "Theory of adsorption and catalysis", Academic Press, 1970.
- 2. J.M. Thomas & W.J. Thomas, "Introduction to principles of heterogeneous catalysis",

- 3. Academic Press, New York, 1967.
- R.H.P. Gasser, "An introduction to chemisorption and catalysis by metals", Oxford, 1985.
- D.K Chakraborthy, "Adsorption and catalysis by solids", Wiley Eastern Ltd. 1990.
- R. Anderson and M. Boudart (Eds), "Catalysis, Science and Technology", Vol 6, Springer- Verlag, Berlin Heildberg, 1984.
- R.B. Anderson, "Experimental methods in catalysis research", Vol I, II, Academic press, NY, 1981.
- R. Szostak, "Molecular sieves: principles of synthesis and identification", Van Nostrand, NY, 1989.
- 9. R. Hughes, "Deactivation of catalysts", Academic press, London, 1984.
- C.M. Starks, C.L. Liotta And M. Halpern, "Phase Transfer Catalysis Fundamentals, Applications And Industrial Perspectives", Chapman & Hall, New York, 1994.
- 11. A.L. Lehninger, "Principles of Biochemistry", Worth Publishers, USA, 1987.
- G. Ertl, H. Knozinger and J. Weitkamp, "Handbook of Heterogeneous Catalysis" Vol 1-5, Wiley-VCH, Weinheim, 1997.
- R.J. Farrauto and C.H. Bartholomew, "Fundamentals of Industrial Catalytic Processes", Blackie Academic and Professional – Chapman and Hall, 1997.
- R. Pearce and W.R. Patterson, "Catalysis and chemical processes", Academic press, Leonard Hill, London, 1981.

## M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER IV

| COURSE CODE –MCH4E06<br>NATURAL PRODUCTS & POLYMER CHEMISTRY (ELECTIVE) |            |          |          |       |  |
|-------------------------------------------------------------------------|------------|----------|----------|-------|--|
| Credit                                                                  | Weightage  |          |          |       |  |
|                                                                         | Hours/week | Internal | External | Total |  |
| 4                                                                       | 4          | 5        | 30       | 35    |  |

# **Course Outcomes**

ſ

| CO No. | Expected Course OutcomeUpon completion of this course, students will<br>be able to;      | Learning<br>Domain | PSO No         |
|--------|------------------------------------------------------------------------------------------|--------------------|----------------|
| CO1    | <i>Classify</i> different types of natural products                                      | Understand         | PSO 1<br>PSO 2 |
| CO2    | <i>Explain</i> isolation and constituents of different essential oils                    | Apply              | PSO4<br>PSO9   |
| CO3    | <i>Demonstrate</i> structural elucidation of terpenoids and alkaloids                    | Understand         | PSO1<br>PSO2   |
| CO4    | <i>Classify</i> alkaloids and anthocyanins                                               | Analyse            | PSO2           |
| CO5    | <i>Categorize</i> different dyes and pigments                                            | Analyse            | PSO2           |
| CO6    | <i>Interrelate</i> different polymerization processes                                    | Understand         | PSO1           |
| CO7    | <i>Distinguish</i> chemistry of different types of polymerisations.                      | Analyse            | PSO4           |
| CO8    | Explain Polymerization techniques                                                        | Create             | PSO4           |
| CO9    | <i>Describe</i> the properties and uses of different industrial polymers                 | Remember           | PSO9           |
| CO10   | <i>Design</i> new polymers with remarkable optical, electrical and mechanical properties | Create             | PS010          |

## **COURSE CONTENT**

| Unit 1: | Basic aspects of Natural Products                                                    | 8 Hours          |  |  |
|---------|--------------------------------------------------------------------------------------|------------------|--|--|
| 1.1.    | 1.1. Classification of Natural Products: Classification of Natural products based on |                  |  |  |
|         | chemical structure, physiological activity, taxonomy and Bioge                       | enesis.          |  |  |
| 1.2.    | Carbohydrates, Terpenoids, Carotenoids, alkaloids, steroids, anthocyanins etc.       |                  |  |  |
|         | Methods of isolation of each class of compound                                       |                  |  |  |
| 1.3.    | Essential Oils:Isolation and study of important constituents of l                    | emon grass oil,  |  |  |
|         | citronella oil, cinnamon oil, palmarosa oil, turpentine o                            | oil, clove oil,  |  |  |
|         | sandalwood oil, Essential oils of turmeric and ginger.                               |                  |  |  |
| 1.4.    | Oleoresins of pepper, chilly, ginger and turmeric. Aromatherap                       | у.               |  |  |
| Unit 2: | Terpenoids and Steroids                                                              | 8 Hours          |  |  |
| 2.1.    | Terpenoids: classification, structure elucidation and synthesis of                   | of abietic acid. |  |  |
| 2.2.    | Steroids: Classification - structure of Cholesterol, Ergoster                        | ol, Oesterone,   |  |  |
|         | Androsterone, Testosterone, Progestrone, Cortisone and Corticosterone.               |                  |  |  |
|         | Structural elucidation of Cholesterol. Conversion of                                 | cholesterol to   |  |  |
|         | progesterone, androsterone and testosterone.                                         |                  |  |  |
| 2.3.    | Classification, structure and synthesis of prostaglandins, biosy                     | nthesis of fatty |  |  |
|         | acids, prostaglandins, terpenoids and steroids.                                      |                  |  |  |
| Unit 3: | Alkaloids and Anthocyanins                                                           | 8 Hours          |  |  |
| 3.1.    | Alkaloids - classification of alkaloids, structure elucidat                          | ion based on     |  |  |
|         | degradative reactions (quinine and atropine). Biosynthesis of                        | of quinine and   |  |  |
|         | papaverine.                                                                          |                  |  |  |
| 3.2.    | Anthocyanins: Introduction, General Nature and Structure of A                        | nthocyanidins.   |  |  |
|         | Flavone, Flavonol, Isoflavone and Chalcone                                           |                  |  |  |
| Unit 4: | Dyes, Pigments and Supramolecules                                                    | 8 Hours          |  |  |
| 4.1.    | Brief introduction to dyes and pigments (natural and synthet                         | tic):b-carotene, |  |  |
|         | indigo, cyclic tetrapyrroles (porphyrins, chlorins, chlorophyll, l                   | neme), study of  |  |  |
|         |                                                                                      | , <b>.</b>       |  |  |

4.2. Introduction to Supramolecular chemistry and Molecular Recognition

### **Unit 5: Polymerization Processes**

- 5.1. Polymerization processes. Free radical addition polymerization. Kinetics and mechanism. Chain transfer. Mayo-walling equation of the steady state. Molecular weight distribution and molecular weight control. Radical Atom Transfer and Fragmentation Addition mechanism. Free radical living polymers.
- 5.2. Cationic and anionic polymerization. Kinetics and mechanism, Polymerization without termination. Living polymers. Step Growth polymerization. Kinetics and mechanism. Molecular weight distribution. Linear Vs cyclic polymerization, other modes of polymerization.
- 5.3. Group Transfer, metathesis and ring opening polymerization. Copolymerization. The copolymerization equation, Q-e scheme,
- 5.4. Gelation and Crosslinking.
- 5.5. Copolymer composition drift Polymerization techniques. Bulk Solution, melt, suspension, emulsion and dispersion techniques.

## **Unit 6: Characterization and Stereochemistry of Polymers**

8 Hours

- 6.1. Polymer Stereochemistry. Organizational features of polymer chains. Configuration and conformation, Tacticity, Repeating units with more than one asymmetric centre.
- 6.2. Chiral polymers main chain and side chain. Stereoregular polymers. Manipulation of polymerization processes. Zeigler-Natta and Kaminsky routes.
- 6.3. Coordination polymerization. Metallocene and Metal oxide catalysts.
- 6.4. Polymer Characterization. Molecular weights. Concept of average molecular weights, Molecular weight distribution. Methods for determining molecular weights. Static and dynamic methods, Light scattering and GPC.
- 6.5. Crystalline and amorphous states. Glassy and Rubbery States. Glass transition and crystalline melting. Spherullites and Lammellac. Degree of Crystallinity, X-ray diffraction

## Unit 7: Polymer Solutions, Industrial polymers and Copolymers8 Hours

- 7.1. Polymer Solutions. Treatment of dilute solution data. Thermodynamics. Flory-Huggins equation.
- 7.2. Chain dimension-chain stiffness End-to-end distance. Conformationrandom coil, Solvation and Swelling. Flory-Reiner equation.
- 7.3. Determination of degree of crosslinking and molecular weight between crosslinks.
- 7.4. Industrial polymers. Synthesis, Structure and applications. Polyethylene, polypropylene, polystyrene.
- 7.5. Homo and Copolymers. Diene rubbers. Vinyl and acrylic polymers. PVC, PVA, PAN, PA. PMMA and related polymers.
- 7.6. Copolymers. EVA polymers. Flourine containing polymers. Polyacetals. Reaction polymers. Polyamides, polyesters. Epoxides, polyurethanes, polycarbonates, phenolics, PEEK, Silicone polymers.

### **Unit 8: Speciality Polymers**

8 Hours

- Reactions of polymers. Polymers as aids in Organic Synthesis. Polymeric Reagents, Catalysts, Substrates.
- 8.2. Liquid Crystalline polymers. Main chain and side chain liquid crystalline polymers. Phase morphology.
- 8.3. Conducting polymers. Polymers with high bandwidth. Polyanilines, polypyrrols, polythiophines, poly(vinylene phenylene).
- 8.4. Photoresponsive and photorefractive polymers. Polymers in optical lithography. Polymer photoresists.
- 8.5. Electrical properties of Polymers, Polymers with NLO properties, second and third harmonic generation, wave guide devises.

## MODE OF TRANSACTION

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

|                                    | MODE OF ASSESSMENT                  |                              |                                       |                                    |                    |  |  |  |
|------------------------------------|-------------------------------------|------------------------------|---------------------------------------|------------------------------------|--------------------|--|--|--|
| Internal Assessment (15 Weightage) |                                     |                              |                                       |                                    |                    |  |  |  |
| a. Int                             | a. Internal Examination 2 Weightage |                              |                                       |                                    |                    |  |  |  |
| 2 II                               | nternal Examina                     | tions, both s                | hould be consid                       | ered                               |                    |  |  |  |
| b. As                              | signments and E                     | exercises:                   | 3 Weighta                             | ge                                 |                    |  |  |  |
| c. Sei                             | ninar/ Viva Voc                     | e:                           | 3 Weighta                             | ge                                 |                    |  |  |  |
| d. Att                             | endance:                            |                              | 3 Weighta                             | ge                                 |                    |  |  |  |
| External A                         | Assessment (30                      |                              | ) Duration .                          | 3 Hours, No of Q                   | uestions: 23       |  |  |  |
| Division                           | Туре                                | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |  |  |  |
| Section A                          | Section A Short 12 8 1              |                              |                                       |                                    |                    |  |  |  |
| Section B                          | 12                                  |                              |                                       |                                    |                    |  |  |  |
| Section C                          | 10                                  |                              |                                       |                                    |                    |  |  |  |
| Total                              |                                     |                              |                                       |                                    | 30                 |  |  |  |

| MODULE WISE WEIGHTAGE DISTRIBUTION |      |  |
|------------------------------------|------|--|
| Module                             | Mark |  |

| Unit 1: Basic aspects of Natural Products                     | 6 |
|---------------------------------------------------------------|---|
| Unit 2: Terpenoids and Steroids                               | 7 |
| Unit 3: Alkaloids and Anthocyanins                            | 6 |
| Unit 4: Dyes, Pigments and Supramolecules                     | 7 |
| Unit 5: Polymerization processes                              | 7 |
| Unit 6: Characterization and Stereochemistry of Polymers      | 7 |
| Unit 7: Polymer Solutions, Industrial polymers and Copolymers | 7 |
| Unit 8: Speciality polymers                                   | 6 |

#### **REFERENCES:**

- 1. M. B. Smith, Organic Synthesis, 3/e, Academic Press, 2011.
- F. A. Carey and R. J. Sundberg: Advanced Organic Chemistry (part B), 3rd ed., Plenum Press.
- 3. T.W. G. Solomons: Fundamentals of Organic Chemistry, 5th ed., John Wiley
- 4. H. O. House: Modern Synthetic Reactions, W. A. Benjamin
- W. Carruthers: Some Modern Methods of Organic Synthesis, 4/e, Cambridge University Press.
- 6. I L. Finar: Organic Chemistry Volumes 1 (6th ed.) and 2 (5th ed.), Pearson.
- J. Clayden, N. Green, S. Warren and P. Wothers: Organic Chemistry, 2/e, Oxford University Press
- N. R. Krishnaswamy: Chemistry of Natural Products; A Unified Approach, Universities Press
- 9. R. J. Simmonds: Chemistry of Biomolecules: An Introduction, RSC
- 10. R. O. C. Norman: Principles of Organic Synthesis, 3nd ed., CRC Press, 1998.
- 11. J. M. Lehn, Supramolecular Chemistry
- 12. F.W. Billmayer. Textbook of Polymer Science. 3rd Edn, Wiley. N.Y. 1991.
- 13. G. Odiyan, Principles of Polymerisation, 4/e, Wiley, 2004.
- 14. V.R. Gowriker and Others, Polymer Science, Wiley Eastern Ltd.
- J.M.G Cowie. Polymers: Physics and Chemistry of Modern Materials. Blackie. London, 1992.
- R.J.Young, Principles of Polymer Science, 3rd Edn., Chapman and Hall. N.Y. 1991.

- P.J. Flory. A Textbook of Polymer Science. Cornell University Press. Ithacka, 1953.
- 18. F. Ullrich, Industrial Polymers, Kluwer, N.Y. 1993.
- 19. H.G.Elias, Macromolecules, Vol. I & II, Academic, N.Y. 1991.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER IV

| COURSE CODE –MCH4E07<br>MATERIAL SCIENCE (ELECTIVE) |            |          |           |       |  |
|-----------------------------------------------------|------------|----------|-----------|-------|--|
| Credit                                              | Hours/week |          | Weightage |       |  |
|                                                     |            | Internal | External  | Total |  |
| 4                                                   | 4          | 5        | 30        | 35    |  |

# **Course Outcomes**

| CO No. | Expected Course OutcomeUpon completion of this course, students will<br>be able to;  | Learning<br>Domain | PSO No         |
|--------|--------------------------------------------------------------------------------------|--------------------|----------------|
| CO1    | <i>Understand</i> various materials and their properties                             | Remember           | PSO 1<br>PSO 2 |
| CO2    | <i>Categorize</i> various materials                                                  | Analyse            | PSO3           |
| CO3    | <i>Evaluate</i> mechanical properties of materials                                   | Analyse            | PSO3<br>PSO5   |
| CO4    | <i>Understand</i> nanomaterials and their preparation                                | Remember           | PSO 1<br>PSO 2 |
| CO5    | <i>Identify</i> materials for special purpose                                        | Analyse            | PSO3           |
| CO6    | <i>Understand</i> fundamental theories and properties of magnetic materials          | Remember           | PSO 1<br>PSO 2 |
| CO7    | <i>Acquire</i> knowledge regarding various synthetic methods for preparing catalysts | Apply              | PSO8           |

## **COURSE CONTENT**

| Unit 1: | Introduction to Material Science                                                                                                                       | 8 Hours        |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|         | Introduction, classification of materials, functional cl<br>classification based on structure, environmental and other effect<br>design and selection. | cts, material  |
| 1.2.    | Mechanical properties – significance and terminology, the tens stress and true strain, bend test, hardness of materials.                               | ile test, true |
| Unit 2: | Ceramic Materials                                                                                                                                      | 8 Hours        |
| 2.1.    | Definition of ceramics, traditional and new ceramics, structure atomic interactions and types of bonds                                                 | of ceramics,   |
| 2.2.    | Phase equilibria in ceramic systems, one component and multi                                                                                           | component      |
|         | systems, use of phase diagrams in predicting material behaviou                                                                                         | r, electrical, |
|         | magnetic, and optical properties of ceramic materials.                                                                                                 |                |
| Unit 3: | Nanomaterials and Nanotechnology                                                                                                                       | 8 Hours        |
| 3.1.    | Nanomaterials, nanostructures, self-assembly, Nanoparticles-                                                                                           | methods of     |
|         | synthesis, sol-gel process, hydrolysis of salts and alkoxides, p                                                                                       | recipitation,  |
|         | condensation reactions, electrokinetic potential and peptization re                                                                                    | eactions;      |
| 3.2.    | Gelatin network- xerogels, aerogels, drying of gels                                                                                                    |                |
| 3.3.    | Chemical modifications of nanosurfaces, applications of sol-gel                                                                                        | process, sol-  |
|         | gel coating, porous solids, catalysts, dispersions and powders                                                                                         |                |
| Unit 4: | Materials for Special Purposes – I                                                                                                                     | 8 Hours        |
| 4.1.    | Production of ultra pure materials - zone refining, vacuum dis                                                                                         | tillation and  |
|         | electro refining                                                                                                                                       |                |
| 4.2.    | Ferroelectric and piezoelectric materials - general properties, class                                                                                  | sification of  |
|         | ferroelectric materials, theory of ferroelectricity, ferroelectric                                                                                     | ic domains,    |
|         | applications, piezoelectric materials and applications                                                                                                 |                |
| 4.3.    | Metallic glasses - preparation, properties and applications.                                                                                           |                |
| Unit 5: | Materials for Special Purposes – II                                                                                                                    | 8 Hours        |

- 5.1. Magnetic materials, ferri and ferro magnetism, metallic magnets, soft, hard & superconducting magnets
- 5.2. Ceramic magnets, low conducting and superconducting magnets;
- 5.3. Superconducting materials metallic and ceramic superconducting materials, theories of superconductivity
- 5.4. Meissner effect; High temperature superconductors structure and applications

## **Unit 6: Some Special Polymers**

8 Hours

- 6.1. Functional polymers photoconductive, electroconductive, piezoelectric and light sensitive polymers.
- 6.2. Industrial polymers production, properties, & compounding of industrial polymers.
- 6.3. Commodity plastics such as PP, PE, PVC, & PS
- 6.4. Engineering plastics such as polyacetyl, polyamide (nylon 6 and nylon 66), polyacrylate, polycarbonate, polyester (PET, PBT), polyether ketones;
- 6.5. Thermosetting plastics such as PF, UF & MF

## **Unit 7: Composite Materials**

8 Hours

**8 Hours** 

- 7.1. Definition and classification of composites, fibres and matrices; Composites with metallic matrices processing, solid and liquid state processing, deposition.
- 7.2. Ceramic matrix composite materials processing, mixing & pressing, liquid state processing, sol -gel processing & vapor deposition technique; Interfaces in composites mechanical & microstructural characteristics.
- 7.3. Applications of composites.

## **Unit 8: Fracture Mechanics**

8.1. Importance of fracture mechanics, micro structural features of fracture in metals, ceramics, glasses & composites, Weibull statistics for failure, strength analysis.

8.2. Fatigue, application of fatigue testing - creep, stress rupture & stress behaviour, evaluation of creep behaviour.

## **MODE OF TRANSACTION**

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

| MODE OF ASSESSMENT                 |                                                                                                     |              |                              |                                       |                                    |                    |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------|--------------|------------------------------|---------------------------------------|------------------------------------|--------------------|--|
| Internal Assessment (15 Weightage) |                                                                                                     |              |                              |                                       |                                    |                    |  |
| a.                                 | Inter                                                                                               | nal Examinat | ion                          | 2 Weighta                             | lge                                |                    |  |
|                                    | 2 Inte                                                                                              | ernal Examin | ations, both s               | hould be consid                       | lered                              |                    |  |
| b.                                 | Assig                                                                                               | gnments and  | Exercises:                   | 3 Weighta                             | 3 Weightage                        |                    |  |
| c.                                 | c. Seminar/ Viva Voce:                                                                              |              |                              | 3 Weighta                             | 3 Weightage                        |                    |  |
| d. Attendance: 3 Weightage         |                                                                                                     |              |                              | lge                                   |                                    |                    |  |
| Extern                             | External Assessment (30 Weightages) Duration 3 Hours, No of Questions: 23 PATTERN OF QUESTION PAPER |              |                              |                                       |                                    |                    |  |
| Divisi                             | on                                                                                                  | Туре         | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |  |

| Section A | Short       | 12 | 8 | 1     | 8  |
|-----------|-------------|----|---|-------|----|
| Section B | Short Essay | 7  | 4 | 3     | 12 |
| Section C | Essay       | 4  | 2 | 5     | 10 |
|           |             |    |   | Total | 30 |

| MODULE WISE WEIGHTAGE DISTRIBUTION          |      |  |  |  |
|---------------------------------------------|------|--|--|--|
| Module                                      | Mark |  |  |  |
| Unit 1: Introduction to Material Science    | 6    |  |  |  |
| Unit 2: Ceramic Materials                   | 6    |  |  |  |
| Unit 3: Nanomaterials and Nanotechnology    | 6    |  |  |  |
| Unit 4: Materials for Special Purposes – I  | 7    |  |  |  |
| Unit 5: Materials for Special Purposes – II | 7    |  |  |  |
| Unit 6: Some Special Polymers               | 7    |  |  |  |
| Unit 7: Composite Materials                 | 7    |  |  |  |
| Unit 8: Fracture Mechanics                  | 7    |  |  |  |

#### **REFERENCES:**

- W.D. Eingery, H.K. Dowen and R.D. Uhlman, Introduction to Ceramics, John Wiley.
- 2. A.G. Guy, Essentials of Material Science, McGraw Hill.
- 3. M.J. Starfield and Shrager, Introductory Material Science, McGraw Hill.
- S.K. Hajra Choudhary, Material Science and Engineering, Indian Book Dist. Co., Calcutta.
- 5. M.W. Barsoum, Fundamentals of Ceramics, McGraw Hill, 1997.
- 6. M. Tinkham, Introduction to Superconductivity, McGraw Hill, 1975.
- A.V. Narlikar and S.N.Edbote, Superconductivity and Superconducting Materials, South Asian Publishers, New Delhi, 1983.
- S.V. Subramanyan and E.S. Rajagopal, High Temperature Superconductors, Wiley Eastern Ltd., 1988.
- 9. Azaroff and Brophy, Electronic Processes in Materials, McGraw Hill, 1985.

- 10. C.M. Srivastava and C. Srinivasan, Science of Engineering Materials, Wiley Eastern Ltd., 1987.
- 11. R.J. Young, Introduction to Polymer Science, John Wiley and Sons.
- 12. V.R. Gowriker and Others, Polymer Science, Wiley Eastern Ltd.
- 13. H. Ulrich, Introduction to Industrial Polymers, Hansen Publishers, 1982.
- F.R. Jones, Handbook of Polymer Fibre Composites, Longman Scientific & Tech.
- 15. K.K. Chowla, Composite Materials, Springer-Verlag, NY, 1987.

| M.Sc. CHEMISTRY (CBCSS PATTE | RN) |
|------------------------------|-----|
| SEMESTER IV                  |     |

| COURSE CODE –MCH4E08<br>ORGANOMETALLIC CHEMISTRY (ELECTIVE) |            |          |           |       |  |
|-------------------------------------------------------------|------------|----------|-----------|-------|--|
| Credit                                                      | Hours/week |          | Weightage |       |  |
| Crean                                                       | Hours/week | Internal | External  | Total |  |
| 4                                                           | 4          | 5        | 30        | 35    |  |

## **Course Outcomes**

| CO No. | Expected Course OutcomeUpon completion of this course, students will<br>be able to;               | Learning<br>Domain | PSO No         |
|--------|---------------------------------------------------------------------------------------------------|--------------------|----------------|
| CO1    | <i>Understand</i> the basics of Organoometallic compounds and their properties                    | Remember           | PSO 1<br>PSO 2 |
| CO2    | Categorize Organometallic compounds                                                               | Analyse            | PSO3           |
| CO3    | <i>Evaluate</i> the properties of organometallic compounds                                        | Analyse            | PSO3<br>PSO5   |
| CO4    | <i>Understand</i> bonding in organometallic compounds                                             | Remember           | PSO 1<br>PSO 2 |
| CO5    | <i>Identify</i> the methods of synthesis of different organometallic compounds                    | Analyse            | PSO3           |
| CO6    | <i>Understand</i> fundamental theories and properties of organometallic compounds                 | Remember           | PSO 1<br>PSO 2 |
| CO7    | <i>Acquire</i> knowledge regarding various reactions and applications of organometallic compounds | Apply              | PSO8           |
| CO8    | <i>Illustrate</i> the catalytic activity of organometallic compounds                              | Apply              | PSO3<br>PSO8   |

## **COURSE CONTENT**

| Unit 1: | Introduction to organometallic compounds                                                                                                                          | 8 Hours       |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| 1.1.    | 1. Organometallic compounds, Classification and nomenclature, the 16 and 18 electron rules, electron counting-covalent and ionic models                           |               |  |  |
| 1.2.    | Main group organometallics-alkyl and aryl, groups 1, 2, 12, 13, 14 and 15 synthesis structure and applications.                                                   |               |  |  |
| 1.3.    | Transition metal to carbon multiple bond-the metal carbenes and                                                                                                   | carbynes,     |  |  |
| 1.4.    | Transition metal complexes with chain $\pi$ ligands – synthesis                                                                                                   | s, structure, |  |  |
|         | bonding and reactions of complexes of ethylene, allyl, bu acetylene.                                                                                              | tadiene and   |  |  |
| Unit 2: | Metal carbonyls and their reactions                                                                                                                               | 8 Hours       |  |  |
| 2.1.    | Metal carbonyls- Bonding modes of CO, IR spectroscopy as a t<br>bonding and structure of metal carbonyls, Synthesis of Metal carb<br>and reductive Carbonylation. | •             |  |  |
| 2.2.    | Reactions of Metal carbonyls-Activation of metal carbonyls, Di                                                                                                    | sproportion,  |  |  |
|         | Nucleophilic addition, electrophilic addition to the carbonyl oxygen,                                                                                             |               |  |  |
| 2.3.    | Carbonyl cation, anions and hydrides, Collmann's reagent                                                                                                          | , Migratory   |  |  |
|         | insertion of carbonyls, Oxidative decarbonylation,                                                                                                                |               |  |  |
| 2.4.    | Photochemical substitution, Microwave assisted substitution.                                                                                                      |               |  |  |
| Unit 3: | Main group organometallic compounds, metal carbenes and                                                                                                           | 8 Hours       |  |  |
|         | carbynes                                                                                                                                                          |               |  |  |
| 3.1.    | General aspects of synthesis, structure, reactivity and application<br>group organometallic compounds. Metal complexes of NO, $H_2$ , C                           |               |  |  |
| 2.2     | Phosphines.                                                                                                                                                       | . 1. 1. 1. 1  |  |  |
| 3.2.    | Metal-carbon multiple bonds - Metal carbenes and carbyne<br>carbenes and carbynes, N-heterocyclic carbons, multiple bond<br>atoms.                                |               |  |  |
| Unit 4: | Organometallic $\pi$ complexes                                                                                                                                    | 8 Hours       |  |  |

- 4.1. Organometallic  $\pi$  complexes synthesis, structure, bonding (molecular orbital treatment) and reactions of C<sub>5</sub>H<sub>5</sub>, C<sub>6</sub>H<sub>6</sub>, C<sub>7</sub>H<sub>7</sub> and C<sub>8</sub>H<sub>8</sub><sup>-2</sup>.
- 4.2. Polyalkyls, polyhydrides and f-block organometallic complexes, Fluxional organometallics.

#### Unit 5: Organometallic compounds in catalysis

#### 8 Hours

- 5.1. Applications of organometallic compounds in organic synthesis and homogeneous catalysis, Complex formation and activation of H<sub>2</sub>, N<sub>2</sub>, O<sub>2</sub>, NO by transition metals. Catalytic steps, Oxidative addition, reductive elimination and insertion reactions Hydrozirconation of alkenes and alkynes.
- 5.2. Homogeneous catalysis. Hydrogenation, isomerization of alkenes, alkyne, cycloadditions, Zeigler-Natta catalysis, hydroformylation of alkenes, Monsanto acetic acid process and Wacker process.
- 5.3. Metal complexes in enantioselective synthesis

### **Unit 6: Organometallic reactions**

8 Hours

- 6.1. Organometallic reactions. SN2 Reactions, Radical Mechanisms, Ionic Mechanisms, σ-Bond Metathesis, Oxidative
- 6.2. Coupling and Reductive decoupling, Reactions involving CO, Insertions Involving Alkenes, Other Insertions, α, β, γ and δ Elimination,
- 6.3. Deinsertion and Nucleophilic and electrophilic attack on coordinated ligand.

**Unit 7: Applications of organometallic reaction** 

**8 Hours** 

- 7.1. Applications of organometallic reaction- Homogeneous catalysis- General features of catalysis, Types of catalyst, Catalytic steps.
- 7.2. Water-gas shift reaction, Fisher-Tropsch reaction, Hydrosilation of alkenes, Hydrocyanation of alkenes.

#### **Unit 8: Organometallic Polymers**

**8 Hours** 

8.1. Organometallic Polymers, Polymers with organometallic moieties as pendant groups, polymers with organometallic moieties in the main chain

- 8.2. Condensation polymers based on ferrocene and on rigid rod polyynes, poly(ferrocenylsilane)s, applications of oly(ferrocenylsilane)s and related polymers.
- 8.3. Applications of rigid-rod polyynes, polygermanes and polystannanes, polymers prepared by ring opening polymerization, organometallic dendrimers

#### **MODE OF TRANSACTION**

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

## **MODE OF ASSESSMENT**

#### Internal Assessment (15 Weightage)

a. Internal Examination 2 Weightage *2 Internal Examinations, both should be considered*b. Assignments and Exercises: 3 Weightage

- 5. Assignments and Excremes. 5 we
- c. Seminar/ Viva Voce: 3 Weightage
- d. Attendance:

External Assessment (30 Weightages) Dur

Duration 3 Hours, No of Questions: 23

## PATTERN OF QUESTION PAPER

3 Weightage

| Division  | Туре        | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |
|-----------|-------------|------------------------------|---------------------------------------|------------------------------------|--------------------|
| Section A | Short       | 12                           | 8                                     | 1                                  | 8                  |
| Section B | Short Essay | 7                            | 4                                     | 3                                  | 12                 |
| Section C | Essay       | 4                            | 2                                     | 5                                  | 10                 |
|           | •           | •                            |                                       | Total                              | 30                 |

| MODULE WISE WEIGHTAGE DISTRIBUTION                              |      |  |  |  |
|-----------------------------------------------------------------|------|--|--|--|
| Module                                                          | Mark |  |  |  |
| Unit 1: Introduction to organometallic compounds                | 6    |  |  |  |
| Unit 2: Metal carbonyls and their reactions                     | 6    |  |  |  |
| Unit 3: Main group organometallic compounds, metal carbenes and | 6    |  |  |  |
| Unit 4: Organometallic $\pi$ complexes                          | 7    |  |  |  |
| Unit 5: Organometallic compounds in catalysis                   | 7    |  |  |  |
| Unit 6: Organometallic reactions                                | 7    |  |  |  |
| Unit 7: Applications of organometallic reaction                 | 7    |  |  |  |
| Unit 8: Organometallic Polymers                                 | 7    |  |  |  |

#### **REFERENCES:**

- 1. B. D. Gupta, A. J. Elias, Basic Organometallic Chemistry Concepts, Synthesis and Applications, Second edition, University Press, 2013.
- 2. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, Fourth edn. 2005, Wiley Interscience.
- 3. J. E. Huheey, Inorganic Chemistry Principles of Structure and Reactivity, 4th edition, Pearson education, 1993
- 4. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry. 5th edition, John and Wiley, 1999.
- 5. R.S. Drago. Physical Methods in Inorganic Chemistry, 2nd edition, Affiliated east west press, 1993.

- 6. P. Powell, Principles of Organomettalic Chemistry, 2nd edition, Chapman and Hall, London, 1998.
- 7. S. F. A. Kettle, Concise co-ordination chemistry, Nelson, 1969.
- 8. S. F. A. Kettle, Physical Inorganic Chemistry-A Co-ordination chemistry Approach, Spectrum academy publishers, 1996.
- 9. Purcell and Kotz, Inorganic Chemistry.
- 10. D. J. Shriver, P. W. Atkins, Inorganic Chemistry, 5th edition, Oxford university press, 2010.

# M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER IV

| COURSE CODE –MCH4E09<br>ADVANCED TOPICS IN CHEMISTRY (ELECTIVE) |            |           |          |       |  |
|-----------------------------------------------------------------|------------|-----------|----------|-------|--|
| Credit                                                          | Hours/week | Weightage |          |       |  |
|                                                                 |            | Internal  | External | Total |  |
| 4                                                               | 4          | 5         | 30       | 35    |  |

# **Course Outcomes**

| CO No. | <b>Expected Course Outcome</b><br>Upon completion of this course, students will<br>be able to; | Learning<br>Domain | PSO No          |
|--------|------------------------------------------------------------------------------------------------|--------------------|-----------------|
| CO1    | <i>Identify</i> supramolecular interactions.                                                   | Remember           | PSO 1<br>PSO 2  |
| CO2    | Compare Energy sources                                                                         | Evaluate           | PSO 3           |
| CO3    | <i>Summarize</i> organic semiconductors and electronics                                        | Understand         | PSO 8           |
| CO4    | Illustrate various characterisation techniques                                                 | Analyse            | PSO 2           |
| 04     | of nanomaterials                                                                               | Anaryse            | PSO 3           |
| CO5    | <i>Distinguish</i> syntesis approaches to nanomaterials                                        | Analyse            | PSO 3           |
| CO6    | <i>Classify</i> drugs                                                                          | Understand         | PSO 1           |
| CO7    | <i>Distinguish</i> internal coordinates and cartesian coordinates                              | Analyse            | PSO 3           |
| CO8    | Judge choice of basis sets                                                                     | Evaluate           | PSO 3<br>PSO 10 |
| CO9    | <i>Compare</i> different types of catalysis                                                    | Evaluate           | PSO 3           |

## **COURSE CONTENT**

| Unit 1: | : Chemistry of Nanomaterials                                                | 16 Hours         |  |  |
|---------|-----------------------------------------------------------------------------|------------------|--|--|
| 1.1.    | History of Nanomaterials - Classification. Size- dependence of              | f properties.    |  |  |
|         | Electronic structure theory of metals and semiconductors. Qu                | uantum size      |  |  |
|         | effects.                                                                    |                  |  |  |
| 1.2.    | Synthesis of nanostructures: bottom-up-approach, top - down approach, self  |                  |  |  |
|         | assembly, lithography techniques - photolithography, soft litho             | graphy, dip-     |  |  |
|         | pen nanolithography.                                                        |                  |  |  |
| 1.3.    | Introduction to carbon nanomaterials.                                       |                  |  |  |
| 1.4.    | Characterizations of Nanomaterials: UV-Visible sp                           | pectroscopy,     |  |  |
|         | Photoluminesce spectroscopy, Raman Spectroscopy, Dynamic lig                | ht scattering    |  |  |
|         | (DLS), X-ray diffraction (XRD), Energy Dispersive X-ray analys              | sis (EDAX),      |  |  |
|         | X-ray photoelectron spectroscopy (XPS),                                     |                  |  |  |
| 1.5.    | Electron microscopic techniques - SEM, TEM. Scanning prob mi                | croscopies -     |  |  |
|         | STM, AFM – Scanning tunneling spectroscopy                                  |                  |  |  |
| 1.6.    | Measurement of electrical properties of nanomaterials.                      |                  |  |  |
| 1.7.    | Applications: Nanoelectronics, nanosensors, nanocatalysts, nanofilteration, |                  |  |  |
|         | diagnostic and therapeutic applications and targeted drug delivery.         |                  |  |  |
| Unit 2: | Introduction to computational quantum chemistry                             | 8 Hours          |  |  |
| 2.1.    | Electronic structure of molecules-Review of Hartee-Fock SCF m               | ethod.           |  |  |
| 2.2.    | Basis sets STOs and GTOs . Nomenclature of Basis sets. Semi er              | mpirical and     |  |  |
|         | ab initio methods.                                                          |                  |  |  |
| 2.3.    | Calculations using Gaussian programme . Spesification of                    | f molecular      |  |  |
|         | geometry using a) Cartisian coordinates and b) Internal coordinat           | es.              |  |  |
| 2.4.    | The Z-matrix . Z- matrices of some simple molecules li                      | ke $H_2, H_2O$ , |  |  |
|         | formaldehyde ammonia and methanol.                                          |                  |  |  |
| Unit 3: | Supramolecular Chemistry                                                    | 8 Hours          |  |  |
| 3.1.    | Concepts and language. Molecular recognition: Molecular re                  | eceptors for     |  |  |
|         | different types of molecules, design and synthesis of coreceptors           | and multiple     |  |  |
|         | recognition.                                                                |                  |  |  |

- 3.2. Host-guest systems Crown ether, cryptants, podants, calixarenes, Cucurbituril.
- 3.3. Supramolecuar Strong, weak and very weak Hydrogen bonds. Utilisation of H-bonds to create supramolecular structures. Use of H bonds in crystal engineering and molecular recognition. Supramolecular reactivity and catalysis.
- 3.4. Transport processes and carrier design.
- 3.5. Supramolecular devices. Supramolecular photochemistry, supramolecular electronic, ionic and switching devices some examples of self- assembly in supramolecular chemistry

#### **Unit 4: Medicinal Chemistry**

# 8 Hours

- 4.1. Drugs: Introduction, different classes of drug, drug action, drug design, pro drugs, factors governing drug design, rational approach to drug design.
- 4.2. SAR and QSAR, physico chemical factors and biological activities. Factors governing ability of drugs.
- 4.3. General methods of drug synthesis. Analgesics(phenazones and phenylbutzone as examples). Antipyretic (paracetamol) Antibiotics (pencillins, chloramphanicol).

#### **Unit 5: Introduction to Industrial Catalysis**

## 8 Hours

- Structure and chemical nature of surfaces. Physisorption and chemisorptions. Energy exchange at surface.
- 5.2. Determination of surface area and pore structure of catalysts physical adsorption methods, X-ray methods, mercury intrusion method, chemisorptions methods.
- 5.3. Determination of surface acidity-TPD method. Catalyst selectivity, effect of pore size on selectivity.
- 5.4. Homogeneous and heterogeneous catalysts. Preparative methods for heterogeneous catalysts- precipitation and coprecipitation methods, sol gel method, flame hydrolysis.

- 5.5. Preparation of Zeolites and silica supports. Mesoporous materials. Introduction to Phase transfer catalysis, biocatalysis, nanocatalysis and polymer supported catalysis.
- 5.6. Application of heterogeneous catalysts in water gas shift reaction, ammonia synthesis, catalytic cracking, Fisher-Tropsch process, three-way catalysis.

#### **Unit 6: Renewable Energy Sources**

### 8 Hours

- 6.1. World's reserve of commercial energy sources and their availability, various forms of energy,
- 6.2. Renewable and conventional energy systems, comparison coal, oil and natural gas, availability, applications, merits and demerits.
- 6.3. Renewable energy sources solar energy, nature of solar radiation, components- solar heaters, solar cookers, water desalination.
- 6.4. Photovoltaic generation basics, merits and demerits of solar energy. i) Solid state junction solar cells: principle of solar cells, Fabrication of CdS/Cu<sub>2</sub>S and CdS/CuInSe<sub>2</sub> solar cells, performance testing, stability and efficiency consideration.
- 6.5. Dye sensitized solar cells (DSSC)-Working principle, Fabrication of DSSCs based on TiO<sub>2</sub> and ZnO, stability and performance of dyes.

## Unit 7: Organic semiconductors and electronics

## 8 Hours

- 7.1. General overview of organic semiconductors and electronics Bonding, Conjugation, Hybridization, Electronic structure. Charge injection and transport in organic semiconductors, optical phenomenon.
- 7.2. Representative materials and their processing
- 7.3. Film deposition techniques, structure-property relationships
- 7.4. Patterning, Printing, Encapsulation
- 7.5. Electro-optical devices theory and fabrication of organic Light emitting diodes, thin film transistors, Solar cells, memory devices and sensors.

## **MODE OF TRANSACTION**

**Face to Face Instruction:** This involves attending traditional classroom lectures and participating in in-person discussions and activities with the instructor and fellow students.

**Peer to Peer learning:** Students have to select a topic in the course and present it in the class which providing opportunity for critical thinking and feedback.

**Group Discussion:** Group discussion will be conducted based on the relevant topic in the course that will improve students' thinking and help them to construct their own meaning about academic contents.

| MODE OF ASSESSMENT             |                 |                              |                                       |                                    |                    |  |
|--------------------------------|-----------------|------------------------------|---------------------------------------|------------------------------------|--------------------|--|
| Internal A                     | ssessment (15   | Weightage)                   |                                       |                                    |                    |  |
| e. Internal Examination 2 Weig |                 |                              | 2 Weighta                             | ge                                 |                    |  |
| 2 In                           | ternal Examina  | ations, both s               | hould be conside                      | ered                               |                    |  |
| f. Ass                         | ignments and E  | Exercises:                   | 3 Weighta                             | ge                                 |                    |  |
| g. Sen                         | ninar/ Viva Voc | e:                           | 3 Weighta                             | 3 Weightage                        |                    |  |
| h. Atte                        | endance:        |                              | 3 Weighta                             | ge                                 |                    |  |
| External A                     |                 |                              | ) Duration :                          | 3 Hours, No of Qa                  | uestions: 23       |  |
| Division                       | Туре            | Total No.<br>of<br>questions | No. of<br>questions to<br>be answered | Weightages<br>for each<br>question | Total<br>Weightage |  |
| Section A                      | Short           | 12                           | 8                                     | 1                                  | 8                  |  |
| Section B                      | Short Essay     | 7                            | 4                                     | 3                                  | 12                 |  |
| Section C                      | Essay           | 4                            | 2                                     | 5                                  | 10                 |  |
|                                |                 |                              |                                       |                                    |                    |  |

## MODULE WISE WEIGHTAGE DISTRIBUTION

| Module                                                  | Mark |
|---------------------------------------------------------|------|
| Unit 1: Chemistry of Nanomaterials                      | 12   |
| Unit 2: Introduction to computational quantum chemistry | 6    |
| Unit 3 Supramolecular Chemistry                         | 7    |
| Unit 4: Medicinal Chemistry                             | 7    |
| Unit 5: Introduction to Industrial Catalysis            | 7    |
| Unit 6: Renewable Energy Sources                        | 7    |
| Unit 7: Organic semiconductors and electronics          | 7    |

#### **REFERENCES:**

- C.P.Poole(Jr.) and F.J. Owens, Introduction to Nanotechnology, Wiley India,2007.
- 2. G.A.Ozin and A.C.Arsenault, Nanochemistry, RSC Publishing, 2008.
- T.Pradeep, The essentials of Nanotechnology, Tata McGra Hill, New Delhi,2007.
- 4. K.J.Klabunde(Ed.), Nanoscale Materials in Chemistry, John Wiley&Sons,2001.
- P.T.Anastas and J.C.Warner, Green Chemistry: Theory and Practice, Oxford University Press, 1998.
- 6. James Clark and Duncan Macquarrie, Handbook of Green Chemistry and Technology, Blackwell Science,2002.
- J.H.Clark, The Chemistry of waste minimization, Blackie Academic, London, 1995.
- C.J.Cramer, Essentials of computational Chemistry: Theories and models, John Wiley & Sons,2002.
- Frank Jensen, Introduction to Computational Chemistry, John Wiley & Sons,1999.
- 10. Errol G Lewars Computational Chemistry: Introduction to the theory and applications of molecular quantum mechanics, Springer, 2001.
- 11. David Young, Computational Chemistry, Wiley –Interscience, 2001.
- 12. F. Vogtle, Supramolecular Chemistry, John Wiley & Sons, Chichester, 1991.
- 13. J. M.Lehn, Supramolecular Chemistry, VCH.

- Lemke, Williams, Roche and Zito, Principles of Medicinal Chemistry, 7/e, Wolters Kluwer, 2012.
- 15. G. Thomas, Fundamentals of Medicinal Chemistry, Wiley.
- 16. G. Gringauz, Introduction to Medical Chemistry, Wiley-VCH, 1997.
- 17. Harkishan Singh and V.K.Kapoor, Medicinal and Pharmaceutical Chemistry, Vallabh Prakashan, 2008.
- A. W. Adamson and A. P. Gast; Physical Chemistry of Surfaces 6 Ed, Wiley, 2011.
- Jens Hajen; Industrial Catalysis: A Practical Approach. 2nd Edn. Wiley VCH 2006.
- Dipak Kumar Chakrabarty; Adsorption and Catalysis by Solids, New Age. 2007.
- C.H. Bartholomew and R.J. Farrauto; Fundamentals of Industrial Catalysis Process. 2nd Edn. Wiley & Sons Inc. 2006.
- 22. Woodruff, D. P. and Delchar T. A.; Modern Techniques of Surface Science, Cambridge Solid State Science Series 1994.
- 23. Kurt K. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, 3rd Edn. Wiley U. K. 2012.
- 24. Bansal N K, Kleeman M and Mells M (1990) Renewable Energy Sources and Conversion Technology, 460 pp. New Delhi: Tata McGraw-Hill.
- 25. Kothari D.P., "Renewable energy resources and emerging technologies", Prentice Hall of India Pvt. Ltd., 2008.
- 26. Rai G.D, "Non-Conventional energy Sources", Khanna Publishers, 2000.
- Michael Grätzel, J. Photochemistry and Photobiology C: Photochemistry Reviews 4 (2003) 145–153, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, Inorg. Chem., Vol. 44, No. 20, 2005 6841-6851.
- Yoshihiro Hamakawa, Thin-Film Solar Cells-Next Generation Photovoltaics and ItsApplications, Springer Series in Photonics 13, 2004.
- 29. Hagen Klauk, 302223Organic Electronics: Materials, Manufacturing and Applications302224, Wiley-VCH, 2006.
- Wolfgang Bruetting, 302221Physics of Organic Semiconductors302222, Wiley-VCH, 2005.

#### M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER IV

| COURSE CODE –MCH4P01<br>RESEARCH PROJECT |            |                   |       |    |
|------------------------------------------|------------|-------------------|-------|----|
| Credit                                   | Hours/week | Weightage         |       |    |
| Crouit                                   |            | Internal External | Total |    |
| 4                                        | 3          | 5                 | 30    | 35 |

Course Outcomes

| CO No. | Expected Course Outcome<br>Upon completion of this course, students will<br>be able to;                                     | Learning<br>Domain | PSO No                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|
| CO1    | <i>Propose</i> a problem for the project work.                                                                              | Create             | PSO 2<br>PSO 3<br>PSO 11 |
| CO2    | <i>Summarize</i> review of literature.                                                                                      | Understand         | PSO 2                    |
| CO3    | <i>Design</i> a methodology for carrying out the project work.                                                              | Create             | PSO 2<br>PSO 3           |
| CO4    | <i>Develop</i> analytical skills in setting up<br>experimental techniques and operate it to<br>determine the data required. | Create<br>Apply    | PSO 4                    |
| CO5    | <i>Measure</i> and interpret the data to draw conclusion.                                                                   | Understand         | PSO 5<br>PSO 6           |
| CO6    | <i>Make</i> a project report.                                                                                               | Create             | PSO 7<br>PSO 11          |

## **Mode of Transaction**

**Experimentation:**This involves learning by doing or hands on experience by applying chemical principles.

**Observation:**Measurement of physical parameters and readings.

#### Mode of Assessment

#### Internal Assessment (weightage:10)

- a. Literature survey and data collection 2 weightage
- b. Interpretation of data & Preparation of Project report 2 weightage
- c. Research attitude -2 weightage
- d. Viva Voce 4 weightage

## External Assessment (30 Weightage)

- a. Significance and relevance of the project 5 weightage
- b. Project report 8 weightage
- c. Presentation 5 weightage
- d. Viva Voce 12 weightage

Examination conducted at the end of IV semester

## M.Sc. CHEMISTRY (CBCSS PATTERN) SEMESTER IV

| COURSE CODE –MCH4V01<br>VIVA VOCE |            |           |                   |       |
|-----------------------------------|------------|-----------|-------------------|-------|
| Credit                            | Hours/week | Weightage |                   |       |
|                                   |            | Internal  | Internal External | Total |
| 2                                 | -          | 0         | 30                | 30    |

## **Course Outcomes**

| CO No. | <b>Expected Course Outcome</b><br>Upon completion of this course, students will<br>be able to; | Learning<br>Domain | PSO No         |
|--------|------------------------------------------------------------------------------------------------|--------------------|----------------|
| CO1    | <i>Describe</i> Theoretical principles behind chemical and physical phenomena.                 | Remember           | PSO 1<br>PSO 2 |
| CO2    | <i>Outline</i> Theoretical principles in the laboratory experiments.                           | Remember           | PSO 1<br>PSO 2 |
| CO3    | <i>Judge</i> scientific statements.                                                            | Evaluate           | PSO 3          |

| Mode of    | Internal Assessment                                       |                                    |  |  |
|------------|-----------------------------------------------------------|------------------------------------|--|--|
| Assessment | No internal evaluation for viva voce examinations         |                                    |  |  |
|            | External Assessment (30 Weightage)                        | External Assessment (30 Weightage) |  |  |
|            | Based on both the Theory and Practical courses during the |                                    |  |  |
|            | programme                                                 |                                    |  |  |
|            | 1. Physical & Theoretical Chemistry – Theory              | y courses 5                        |  |  |
|            | Weightage                                                 |                                    |  |  |
|            | 2. Physical Chemistry – Practical courses                 | 5 Weightage                        |  |  |
|            | 3. Inorganic Chemistry – Theory courses                   | 5 Weightage                        |  |  |
|            | 4. Inorganic Chemistry – Practical courses                | 5 Weightage                        |  |  |
|            | 5. Organic Chemistry – Theory courses                     | 5 Weightage                        |  |  |
|            | 6. Organic Chemistry – Practical courses                  | 5 Weightage                        |  |  |

Examination conducted at the end of IV semester