FAROOK COLLEGE (Autonomous)

SYLLABUS

for
M.Sc. PG PROGRAMME
in

MATHEMATICS

Under

CHOICE BASED CREDIT SEMESTER SYSTEM (FCCBCSS PG)
(Effective from 2019 admission onwards)
Total Credits : 80

CERTIFICATE

I hereby certify that the documents attached are the bona fide copies of the syllabus of M.Sc. Mathematics Programme to be effective from the academic year 2019-20 onwards.
Date:
Place:
PRINCIPAL

SEMESTER 1

Course Code	Title of the Course	No. of Credits	Work Load Hrs./week	Core/Audit Course
MMT1Co1	Algebra- I	4	5	core
MMT1Co2	Linear Algebra	4	5	core
MMT1Co3	Real Analysis I	4	5	core
MMT1Co4	Discrete Mathematics	4	5	core
MMT1Co5	Number Theory	4	5	core
MMT1Ao1	Ability Enhancement Course ${ }^{\text {a }}$	4	0	Audit Course

SEMESTER 2

Course Code	Title of the Course	No. of Credits	Work Load Hrs./week	Core/Elective
MMT2C06	Algebra- II	4	5	core
MMT2Co7	Real Analysis II	4	5	core
MMT2Co8	Topology	4	5	core
MMT2C09	ODE \& calculus of variations	4	5	core
MMT2C10 $^{\text {Operations Research }}$	4	5	core	
	Professional Competency Course ${ }^{a}$	4		

SEMESTER 3

Course Code	Title of the Course	No. of Credits	Work Load Hrs./week	Core/Elective
MMT 3C11	Multivariable Calculus \& Geometry	4	5	core
MMT3C12	Complex Analysis	4	5	core
MMT3C13	Functional Analysis	4	5	core
MMT3C14	PDE \& Integral Equations	4	5	core
	Elective I*	3	5	Elective

SEMESTER 4

Course Code	Title of the Course	No. of Credits	Work Load Hrs./week	Core/Elective
MMT4C15	Advanced Functional Analysis	4	5	Core
	${\text { Elective II }{ }^{* *}}^{\text {Clective III** }}$	3	5	Elec.
	Elective IV**	3	5	Elec.
	Elec.	5	5	Elec.
MMT4Po1	Project	4	5	Core
MMT4 Vo1	Viva Voce	4		Core

${ }^{a}$ Evaluation of these courses will be as per the latest PG regulations.

* This Elective is to be selected from list of elective courses in third semester
${ }^{* *}$ This Elective is to be selected from list of elective courses in fourth semester

List of Elective Courses in Third Semester

1. MMT3Eo1 Coding theory
2. MMT3E02 Cryptography
3. MMT3Eo3 Measure \& Integration
4. MMT3E04 Probability Theory

List of Elective Courses in Fourth Semester

1. MMT4Eo5 Advanced Complex Analysis
2. MMT4Eo6 Algebraic Number Theory
3. MMT4E07 Algebraic Topology
4. MMT4Eo8 Commutative Algebra
5. MMT4E09 Differential Geometry
6. MMT4E10 Fluid Dynamics
7. MMT4E11 Graph Theory
8. MMT4E12 Representation Theory
9. MMT4E13 Wavelet Theory
10.MMT4E14 Computer Oriented Numerical Analysis

ABILITY ENHANCEMENT COURSE(AEC)

Successful fulfillment of any one of the following shall be considered as the completion of AEC.
(i) Internship, (ii) Class room seminar presentation, (iii) Publications, (iv) Case study analysis, (v) Paper presentation, (vi) Book reviews. A student can select any one of these as AEC.
Internship: Internship of duration 5 days under the guidance of a faculty in an institution/department other than the parent department. A certificate of the same should be obtained and submitted to the parent department.
Class room seminar: One seminar of duration one hour based on topics in mathematics beyond the prescribed syllabus.
Publications: One paper published in conference proceedings/ Journals. A copy of the same should be submitted to the parent department.
Case study analysis: Report of the case study should be submitted to the parent department.
Paper presentation: Presentation of a paper in a regional/ national/ international seminar/conference. A copy of the certificate of presentation should be submitted to the parent department.

Book Reviews: Review of a book. Report of the review should be submitted to the parent department.

A student can select any one of the following as Professional Competency course:

1. Technical writing with LATEX.
2. Scientific Programming with Scilab.
3. Scientific Programming with C++.

PROJECT

The Project Report (Dissertation) should be self contained. It should contain table of contents, introduction, at least three chapters, bibliography and index. The main content may be of length not less than 30 pages in the A_{4} format with one and half line spacing. The project report should be prepared preferably in ETEX. There must be a project presentation by the student followed by a viva voce. The components and weightage of External and Internal valuation of the Project are as follows:

Components	External(weightage)	Internal (weightage)
Relevance of the topic \& statement of problem	4	$\mathbf{1}$
Methodology \& analysis	4	$\mathbf{1}$
Quality of Report \& Presentation	4	$\mathbf{1}$
Viva Voce	8	2
Total weightage	20	5

The external project evaluation shall be done by a Board consisting two External Examiners. The Grade Sheet is to be consolidated and must be signed by the External Examiners.

MMT4Vo1 VIVA VOCE EXAMINATIONS

The Comprehensive Viva Voce is to be conducted by a Board consisting of two External Examiners. The viva voce must be based on the core papers of the entire programme. There should be questions from at least one course of each of the semesters I, II, and III. Total weightage of viva voce is 15 . The same Board of two External Examiners shall conduct both the project evaluation and the comprehensive viva voce examination. The Board of Examiners shall evaluate at most 10 students per day.

The evaluation scheme for each course except audit courses shall contain two parts.
(a)Internal Evaluation: 20\% Weightage
(b) External Evaluation: 80\% Weightage

Both the Internal and the External evaluation shall be carried out using direct grading system as per the general guidelines of the University.
Internal evaluation must consist of
(i) 2 tests
(ii) one assignment
(iii) one seminar and
(iv) attendance,
with weightage 2 for tests (together) and weightage 1 for each other component.
Each of the two internal tests is to be a 10 weightage examination of duration one hour in direct grading.

Question Paper Pattern for the written examinations

For each course there will be an external examination of duration 3 hours. The valuation will be done by Direct Grading System. Each question paper will consist of 8 short answer questions each of weightage 1,9 paragraph type questions each of weightage 2 , and 4 essay type questions each of weightage 5 . All short answer questions are to be answered while 6 paragraph type questions and 2 essay type questions are to be answered with a total weightage of 30 . The questions are to be evenly distributed over the entire syllabus(see the model question paper). More specifically, each question paper consists of three parts viz Part A, Part B and Part C. Part A will consist of 8 short answer type questions each of weightage 1 of which at least 2 questions should be from each module. Part B has 3 units based on the 3 modules of each course. From each module there will be three questions of which two should be answered. Part C will consist of four essay type questions each of weightage 5 of which 2 should be answered. These questions should cover the entire syllabus of the course.

Question Paper Pattern

M.Sc. Mathematics Examination (FCCBCSS)
 PAPER NAME AND CODE

Time: $\mathbf{3}$ hrs

Maximum: 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.
1)
2)
3)
4)
5)
6)
7)
8)

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

Unit I

9)
10)
11)

Unit II

12)
13)
14)

Unit III
15)
16)
17)

Part C

Answer any two questions. Each question carries 5 weightage.
18) a)
b)
19) a)
b)
20) a)
b)
21) a)
b)
$(2 \times 5=10)$

Question Paper Pattern for the written examination of the Elective Course:

MMT4E 14: Computer Oriental Numerical Analysis

In the case of the Elective Course MMT4E14: Computer Oriental Numerical Analysis, the external examination will consist of a written examination and a practical examination each of duration one and half hours. Each will carry a weightage of 15 . Thus the total weightage is 30 as in the case of other courses. The details are appended to the syllabus of the course.

For the Elective Course MMT4E14: Computer Oriental Numerical Analysis there will be a Theory written examination and a practical examination each of duration one and half hours. The valuation will be done by Direct Grading System. The question paper for the written examination will consists of 4 short answer questions, each of weightage 1,5 paragraph type questions each of weightage 2 and 2 essay type questions, each of weightage 5. All short answer questions are to be answered while 3 paragraph type questions and 1 essay type questions are to be answered with a total weightage of 15 . The questions are to be evenly distributed over the entire syllabus.

The average of the final grade points of the two tests can be used to obtain the final consolidated letter grade for tests (together) according to the following table.

Average grade point (2 tests)	Grade for Tests	Grade Point for Tests
4.5 to 5	A+	5
3.75 to 4.49	A	4
3 to 3.74	B	3
2 to 2.99	C	2
Below 2	D	$\mathbf{1}$
Absent	E	0

Table 1: Internal Grade Calculation: Examples

Tests	Grade Point of Test1	Grade Point of Test2	Average Test Grade Point	Test Grade	Test Grade Point	Test Weightage	Test Weighted Grade Point
Student1	4.8	3.5	4.15	A	4	2	8
Student2	5	4.8	4.9	A+	5	2	10
Student3	2.3	4.7	3.5	B	3	2	6

Assignment	Assignment Grade	Assignment Grade Point	Assignment Weightage	Assignment Weighted Grade Point
Student1	A+	5	$\mathbf{1}$	5
Student2	A	4	$\mathbf{1}$	4
Student3	C	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$

Seminar	Seminar Grade	Seminar Grade Point	Seminar Weightage	Seminar Weighted Grade Point
Student1	B	3	$\mathbf{1}$	3
Student2	A+	5	$\mathbf{1}$	5
Student3	D	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Attendance	Attendance Grade	Attendance Grade Point	Attendance Weightage	Attendance Weighted Grade Point
Student1	A+	5	$\mathbf{1}$	5
Student2	A+	5	$\mathbf{1}$	5
Student3	C	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$

Consolidation	Total Weighted Grade Point	Total Weightage	Total Internal Grade Point	Final Internal Grade
Student1	21	5	$21 / 5=4.2$	A
Student2	24	5	$24 / 5=4.8$	A+
Student3	11	5	$11 / 5=2.2$	C

Detailed Syllabi

SEMESTER 1

MMT1Co1: ALGEBRA - I
 No. of Credits: 4
 No. Of hours of Lectures/week: 5

TEXT : JOHN B. FRALEIGH, A FIRST COURSE IN ABSTRACT ALGEBRA (7th Edn.), Pearson Education Inc., 2003.

Module 1

Plane Isometries, Direct products \& finitely generated Abelian Groups, Factor Groups, Factor-Group Computations and Simple Groups, Group action on a set, Applications of Gset to counting [Sections 12, 11, 14, 15, 16, 17].

Module 2

Isomorphism theorems, Series of groups, (Omit Butterfly Lemma and proof of the Schreier Theorem), Sylow theorems, Applications of the Sylow theory, Free Groups (Omit Another look at free abelinan groups)[Sections 34, 35, 36, 37, 39].

Module 2

Group Presentations, Rings of polynomials, Factorization of polynomials over a field, Non Commutative examples, Homomorphism and factor rings[sections 40, 22, 23, 24, 26].

References

[1] N. Bourbaki: Elements of Mathematics: Algebra I, Springer; 1998.
[2] Dummit and Foote: Abstract algebra(3rd edn.); Wiley India; 2011.
[3] P.A. Grillet: Abstract algebra(2nd edn.); Springer; 2007
[4] I.N. Herstein: Topics in Algebra(2nd Edn); John Wiley \& Sons, 2006.
[5] T.W. Hungerford: Algebra; Springer Verlag GTM 73(4th Printing); 1987.
[6] N. Jacobson: Basic Algebra-Vol. I; Hindustan Publishing Corporation(India), Delhi; 1991.
[7] T.Y. Lam: Exercises in classical ring theory(2nd edn); Springer; 2003.
[8] C. Lanski: Concepts in Abstract Algebra; American Mathematical Society; 2010.
[9] N.H. Mc Coy: Introduction to modern algebra, Literary Licensing, LLC; 2012.
[10] S. M. Ross: Topics in Finite and Discrete Mathematics; Cambridge; 2000.
[11] J. Rotman: An Introduction to the Theory of Groups(4th edn.); Springer, 1999.

MMT1Co2: LINEAR ALGEBRA

No. of Credits: 4

No. Of hours of Lectures/week: 5

TEXT : HOFFMAN K and KUNZE R., LINEAR ALGEBRA(2 ${ }^{\text {nd }}$ Edn.), Prentice-Hall of India, 1991.

Module 1

Vector Spaces \& Linear Transformations [Chapter 2 Sections 2.1-2.4; Chapter 3, Sections 3.1 to 3.3 from the text]

Module 2

Linear Transformations (continued) and Elementary Canonical Forms [Chapter 3 Sections 3.4-3.7; Chapter 6, Sections 6.1 to 6.4 from the text]

Module 3

Elementary Canonical Forms (continued), Inner Product Spaces [Chapter 6, Sections 6.6 \& 6.7; Chapter 8, Sections 8.1 \& 8.2 from the text]

References

[1] P. R. Halmos: Finite Dimensional Vector spaces; Narosa Pub House, New Delhi; 1980.
[2] A. K. Hazra: Matrix: Algebra, Calculus and generalised inverse- Part I;
Cambridge International Science Publishing; 2007.
[3] I. N. Herstein: Topics in Algebra; Wiley Eastern Ltd Reprint; 1991.
[4] S. Kumaresan: Linear Algebra-A Geometric Approach; Prentice Hall of India; 2000.
[5] S. Lang: Linear Algebra; Addison Wesley Pub.Co.Reading, Mass; 1972.
[6] S. Maclane and G. Bikhrkhoff: Algebra; Macmillan Pub Co NY; 1967.
[7] N. H. McCoy and R. Thomas: Algebra; Allyn Bacon Inc NY; 1977.
[8] R. R. Stoll and E.T.Wong: Linear Algebra; Academic Press International Edn; 1968.
[9] G. Strang: linear algebra and its applications(4th edn.); Cengage Learning; 2006.

MMT1Co3: REAL ANALYSIS I
 No. of Credits: 4
 No. Of hours of Lectures/week: 5

TEXT : RUDIN W., PRINCIPLES OF MATHEMATICAL ANALYSIS(3 ${ }^{r d}$ Edn.), Mc. GrawHill, 1986.

Module 1

Basic Topololgy Finite, Countable and Uncountable sets Metric Spaces, Compact Sets, Perfect Sets, Connected Sets. Continuity - Limits of function, Continuous functions, Continuity and compactness, continuity and connectedness, Discontinuities, Monotonic functions, Infinite limits and Limits at Infinity [Chapter 2 \& Chapter 4].

Module 2

Differentiation The derivative of a real function, Mean Value theorems, The continuity of Derivatives, L Hospitals Rule, Derivatives of Higher Order, Taylors Theorem, Differentiation of Vector valued functions. The Riemann Stieltjes Integral, - Definition and Existence of the integral, properties of the integral, Integration and Differentiation[Chapter 5 \& Chapter 6 up to and including 6.22].

Module 3

The Riemann Stieltjes Integral (Continued) - Integration of Vector vector-valued Functions, Rectifiable curves. Sequences and Series of Functions - Discussion of Main problem, Uniform convergence, Uniform convergence and continuity, Uniform convergence and Inte- gration, Uniform convergence and Differentiation. Equicontinuous Families of Functions, The Stone Weierstrass Theorem[Chapters 6 (from 6.23 to 6.27) \& Chapter 7 (upto and including 7.27 only)].

References

[1] H. Amann and J. Escher: Analysis-I; Birkhuser; 2006.
[2] T. M. Apostol: Mathematical Analysis(2nd Edn.); Narosa; 2002.
[3] R. G. Bartle: Elements of Real Analysis(2nd Edn.); Wiley International Edn.; 1976.
[4] R. G. Bartle and D.R. Sherbert: Introduction to Real Analysis; John Wiley Bros; 1982.
[5] J. V. Deshpande: Mathematical Analysis and Applications- an Introduction; Alpha Science International; 2004.
[6] V. Ganapathy Iyer: Mathematical analysis; TataMcGrawHill; 2003.
[7] R. A. Gordon: Real Analysis- a first course(2nd Edn.); Pearson; 2009.
[8] F. James: Fundamentals of Real analysis; CRC Press; 1991.
[9] A. N. Kolmogorov and S. V. Fomin: Introductory Real Analysis; Dover Publications Inc; 1998.
[10] S. Lang: Under Graduate Analysis(2nd Edn.);Springer-Verlag; 1997.
[11]M. H. Protter and C. B. Moray: A first course in Real Analysis; Springer Verlag UTM; 1977.
[12] C. C. Pugh: Real Mathematical Analysis, Springer; 2010.
[13]K. A. Ross: Elementary Analysis- The Theory of Calculus(2nd edn.); Springer; 2013.
[14]A. H. Smith and Jr. W.A. Albrecht: Fundamental concepts of analysis; Prentice Hall of India; 1966
[15] V. A. Zorich: Mathematical Analysis-I; Springer; 2008.

MMT1Co4: DISCRETE MATHEMATICS
 No. of Credits: 4
 No. of hours of Lectures/week: 5

TEXT 1: R. BALAKRISHNAN and K. RANGANATHAN, A TEXT BOOK OF GRAPH THEORY, Springer-Verlag New York, Inc., 2000.

TEXT 2: K. D JOSHI, FOUNDATIONS OF DISCRETE MATHEMATICS, New Age International(P) Limited, New Delhi, 1989.

TEXT 3: PETER LINZ, AN INTRODUCTION TO FORMAL LANGUAGES AND AUTOMATA (2 ${ }^{\text {nd }}$ Edn.), Narosa Publishing House, New Delhi, 1997.

Module 1

Basic concepts, Subgraphs, Degree of vertices, Paths and connectedness, Automor phism of a simple graph, Operations on graphs, Vertex cuts and Edge cuts, Connectivity and Edge connectivity, Trees-Definition, Characterization and Simple properties, Eulerian graphs, Planar and Non planar graphs, Euler formula and its consequences, K_{5} and $\mathrm{K}_{3,3}$ are non planar graphs, Dual of a plane graph. [TEXT 1 Chapter 1 Sections 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, Chapter 3 Sections 3.1, 3.2, Chapter 4 Section 4.1 (upto and including 4.1.10), Chapter 6; Section 6.1 (upto and including 6.1.2), Chapter 8 ;Sections 8.1 (upto and including 8.1.7), 8.2 (upto and including 8.2.7), 8.3, 8.4.]

Module 2

Order Relations, Lattices; Boolean Algebra Definition and Properties, Boolean Functions. [TEXT 2 - Chapter 3 (section. 3 (3.1-3.11), chapter 4 (sections 1\& 2)].

Module 3

Automata and Formal Languages: Introduction to the theory of Computation: Three basic concepts, some applications, Finite Automata: Deterministic finite accepters, Non deterministic accepters, Equivalence of deterministic and nondeterministic finite accepters. [TEXT 3 - Chapter 1 (sections 1.2 \& 1.3); Chapter 2 (sections 2.1, 2.2 \& 2.3)]

References

[1] J. C. Abbot: Sets, lattices and Boolean Algebras; Allyn and Bacon, Boston; 1969.
[2] J. A. Bondy, U.S.R. Murty: Graph Theory; Springer; 2000.
[3] S. M. Cioaba and M.R. Murty: A First Course in Graph Theory and Combinatorics; Hindustan Book Agency; 2009.
[4] J. A. Clalrk: A first look at Graph Theory; World Scientific; 1991.
[5] Colman and Busby: Discrete Mathematical Structures; Prentice Hall of India; 1985.
[6] C. J. Dale: An Introduction to Data base systems(3rd Edn.); Addison Wesley Pub Co., Reading Mass; 1981.
[7] R. Diestel: Graph Theory(4th Edn.); Springer-Verlag; 2010
[8] S. R. Givant and P. Halmos: Introduction to boolean algebras; Springer; 2009.
[9] R. P. Grimaldi: Discrete and Combinatorial Mathematics- an applied introduction (5th edn.); Pearson; 2007.
[10] J. L. Gross: Graph theory and its applications(2nd edn.); Chapman \& Hall/CRC; 2005.
[11]F. Harary: Graph Theory; Narosa Pub. House, New Delhi; 1992.
[12]D. J. Hunter: Essentials of Discrete Mathematics(3rd edn.); Jones and Bartlett Publishers; 2015.
[13]A. V. Kelarev: Graph Algebras and Automata; CRC Press; 2003
[14]D. E. Knuth: The art of Computer programming -Vols. I to III; Addison Wesley Pub Co., Reading Mass; 1973.
[15]C. L. Liu : Elements of Discrete Mathematics(2nd Edn.); Mc Graw Hill International Edns. Singapore; 1985.
[16]L. Lovsz, J. Pelikn and K. Vesztergombi: Discrete Mathematics: Elementary and beyond; Springer; 2003.
[17]J. G. Michaels and K.H. Rosen: Applications of Discrete Mathematics; McGrawHill International Edn. (Mathematics \& Statistics Series); 1992.
[18] Narasing Deo: Graph Theory with applications to Engineering and Computer Science; Prentice Hall of India; 1987.
[19]W. T. Tutte: Graph Theory; Cambridge University Press; 2001
[20] D. B. West: Introduction to graph theory; Prentice Hall; 2000.
[21]R. J. Wilson : Introduction to Graph Theory; Longman Scientific and Technical Essex(co-published with John Wiley and sons NY); 1985.

SEMESTER 1

MMT1CO5: NUMBER THEORY
 No. of Credits: 4 No. of hours of Lectures/week: 5

TEXT 1 : APOSTOL T.M., INTRODUCTION TO ANALYTIC NUMBER THEORY,
Narosa Publishing House, New Delhi, 1990.
TEXT 2: KOBLITZ NEAL A., COURSE IN NUMBER THEROY AND CRYPTOGRAPHY, Springer Verlag, New York, 1987.

Module 1

Arithmetical functions and Dirichlet multiplication; Averages of arithmetical functions [Chapter 2: sections 2.1 to 2.14, 2.18, 2.19; Chapter 3: sections 3.1 to $3.4,3.9$ to 3.12 of Text

Module 2

1]
Some elementary theorems on the distribution of prime numbers [Chapter 4: Sections 4.1 to 4.10 of Text 1]

Module 3

Quadratic residues and quadratic reciprocity law [Chapter 9: sections 9.1 to 9.8 of Text 1] Cryptography, Public key [Chapters 3 ; Chapter 4 sections 1 and 2 of Text 2.]

References

[1] A. Beautelspacher: Cryptology; Mathematical Association of America (Incorporated); 1994
[2] H. Davenport: The higher arithmetic(6th Edn.); Cambridge Univ. Press; 1992
[3] G. H. Hardy and E.M. Wright: Introduction to the theory of numbers; Oxford International Edn; 1985
[4] A. Hurwitz \& N. Kritiko: Lectures on Number Theory; Springer Verlag ,Universi- text; 1986
[5] T. Koshy: Elementary Number Theory with Applications; Harcourt / Academic Press; 2002
[6] D. Redmond: Number Theory; Monographs \& Texts in Mathematics No: 220; Mar cel Dekker Inc.; 1994
[7] P. Ribenboim: The little book of Big Primes; Springer-Verlag, New York; 1991
[8] K.H. Rosen: Elementary Number Theory and its applications(3rd Edn.); Addison Wesley Pub Co.; 1993
[9] W. Stallings: Cryptography and Network Security-Principles and Practices; PHI; 2004
[10] D.R. Stinson: Cryptography- Theory and Practice(2nd Edn.); Chapman \& Hall / CRC (214. Simon Sing : The Code Book The Fourth Estate London); 1999
[11] J. Stopple: A Primer of Analytic Number Theory-From Pythagorus to Riemann;

Cambridge Univ Press; 2003.
[12] S.Y. Yan: Number Theroy for Computing(2nd Edn.); Springer-Verlag; 2002.

MMT2Co6: ALGEBRA II

No. of Credits: 4
No. of hours of Lectures/week: 5

TEXT: John B. Fraleigh: A FIRST COURSE IN ABSTRACT ALGEBRA(7 ${ }^{\text {th }}$ Edn.), Pearson Education Inc., 2003.

Module 1

Prime and Maximal Ideals, Introduction to Extension Fields, Algebraic Extensions (Omit Proof of the Existence of an Algebraic Closure), Geometric Constructions. [27, 29, 31, 32]

Module 2

Finite Fields, Automorphisms of Fields, The Isomorphism Extension Theorem, Splitting Fields, Separable Extensions. [33, 48, 49, 50, 51]

Module 3

Galois Theory, Illustration of Galois Theory, Cyclotomic Extensions, Insolvability of the Quintic. [53, 54, 55, 56]

References

[1] N. Bourbaki: Elements of Mathematics: Algebra I, Springer; 1998
[2] Dummit and Foote: Abstract algebra(3rd edn.); Wiley India; 2011
[3] M.H. Fenrick: Introduction to the Galois correspondence(2nd edn.); Birkhuser; 1998
[4] P.A. Grillet: Abstract algebra(2nd edn.); Springer; 2007
[5] I.N. Herstein: Topics in Algebra(2nd Edn); John Wiley \& Sons, 2006.
[6] T.W. Hungerford: Algebra; Springer Verlag GTM 73(4th Printing); 1987
[7] C. Lanski: Concepts in Abstract Algebra; American Mathematical Society; 2010
[8] R. Lidl and G. Pilz Appli:ed abstract algebra(2nd edn.); Springer; 1998
[9] N.H. Mc Coy: Introduction to modern algebra, Literary Licensing, LLC; 2012
[10] J. Rotman: An Introduction to the Theory of Groups(4th edn.); Springer; 1999
[11] I. Stewart: Galois theory(3rd edn.); Chapman \& Hall/CRC; 2003.

MMT2Co7: REAL ANALYSIS II

No. of Credits: 4
No. of hours of Lectures/week: 5

TEXT : H. L.Royden ,P. M. FitzpatrickH.L. REAL ANAYLSIS (4th Edn.), Prentice Hall of India, 2000.

Module 1

The Real Numbers:Sets, Sequences and Functions Chapter 1 : Sigma Algebra, Borel sets Section 1.4 : Proposition13

Lebesgue Measure Chapter 2 : Sections 2.1, 2.2 , 2.3, 2.4, 2.5, 2.6,2.7 upto preposition19. Lebesgue Measurable Functions Chapter 3 : Sections 3.1, 3.2, 3.3

Module 2

Lebesgue Integration Chapter 4 : Sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6
Lebesgue Integration: Further Topics Chapter 5 : Sections: 5.1, 5.2,5•3

Module 3

Differentiation and Integration Chapter 6 : Sections 6.1, 6.2, 6.3 6.4, 6.5,6.6 The
L^{p} spaces : Completeness and Approximation Chapter 7 : Sections $7.1,7.2,7.3$

References

[1] K B. Athreya and S N Lahiri:, Measure theory, Hindustan Book Agency, New Delhi,(2006).
[2] R G Bartle:, The Elements of Integration and Lebsgue Mesure, Wiley(1995).
[3] S K Berberian: ,measure theory and Integration, The Mc Millan Company, New York,(1965).
[4] L M Graves: ,The Theory of Functions of Real Variable Tata McGraw-Hill Book Co(1978)
[5] P R Halmos: , Measure Theory, GTM ,Springer Verlag
[6] W Rudin:, Real and Complex Analysis,Tata McGraw Hill, New Delhi,2006
[7] I K Rana:, An Introduction to Measure and Integration, Narosa Publishing Company, New York.
[8] Terence Tao: , An Introduction to Measure Theory, Graduate Studies in Mathematics, Vol 126 AMS.

SEMESTER 2

MMT2Co8: TOPOLOGY

No. of Credits: 4

No. of hours of Lectures/week: 5

TEXT : JOSHI, K.D., INTRODUCTION TO GENERAL TOPOLOGY (Revised Edn.), New Age International(P) Ltd., New Delhi, 1983.

Module 1

A Quick Revision of Chapter 1,2 and 3. Topological Spaces, Basic Concepts [Chapter 4 and Chapter 5 Sections 1, Section 2 (excluding 2.11 and 2.12) and Section 3 only]

Module 2

Making Functions Continuous, QuotientSpaces, Spaces with Special Properties [Chapter 5 Section 4 and Chapter 6]

Module 3

Separation Axioms: Hierarchy of Separation Axioms, Compactness and Separation Axioms, The Urysohn Characterization of Normality, Tietze Characterisation of Normality. [Chapter 7: Sections 1 to 3 and Section 4 (up to and including 4.6)]

References

[1] M.A. Armstrong: Basic Topology; Springer- Verlag New York; 1983
[2] J. Dugundji: Topology; Prentice Hall of India; 1975
[3] M. Gemignani: Elementary Topology; Addison Wesley Pub Co Reading Mass; 1971
[4] M.G. Murdeshwar: General Topology(2nd Edn.); Wiley Eastern Ltd; 1990
[5] G.F.Simmons: Introduction to Topology and Modern Analysis; McGrawHill Inter- national Student Edn.; 1963
[6] S. Willard: General Topology; Addison Wesley Pub Co., Reading Mass; 1976.

MMT2Co9: ODE AND CALCULUS OF VARIATIONS

No. of Credits: 4

No. of hours of Lectures/week: 5

TEXT : SIMMONS, G.F., DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES(3rd Edn.), New Delhi, 2016.

Module 1

Power Series Solutions and Special functions; Some Special Functions of Mathematical Physics. [Chapter 5: Sections 27, 28, 29, 30, 31, 32 ; Chapter 8: Sections 44, 45]

Module 2

Some special functions of Mathematical Physics (continued), Systems of First Order Equations; Non linear Equations [Chapter 8 : Sections 46, 47 ; Chapter 10 :Sections 55, 56; Chapter 11 : Sections 58, 59, 60, 61, 62]

Module 3

Qualitative Properties of Solutions, The Existence and Uniqueness of Solutions, The Calculus of Variations. [Chapter 4 : Sections 24, 25 ; Chapter 13 : Sections 68, 69, 70: Chapter 12 : Sections 65, 66, 67]

References

[1] G. Birkhoff and G.C. Rota: Ordinary Differential Equations(3rd Edn.); Edn. Wiley \& Sons; 1978
[2] W.E. Boyce and R.C. Diprima: Elementary Differential Equations and boundary value problems(2nd Edn.); John Wiley \& Sons, NY; 1969.
[3] Chakrabarti: Elements of ordinary Differential Equations and special functions; Wiley Eastern Ltd., New Delhi; 1990
[4] E.A. Coddington: An Introduction to Ordinary Differential Equtions; Printice Hall of India, New Delhi; 1974
[5] R.Courant and D. Hilbert: Methods of Mathematical Physics- vol I; Wiley Eastern Reprint; 1975
[6] P. Hartman: Ordinary Differential Equations; John Wiley \& Sons; 1964
[7] L.S. Pontriyagin : A course in ordinary Differential Equations Hindustan Pub. Corporation, Delhi; 1967.
[8] I. Sneddon: Elements of Partial Differential Equations; McGraw-Hill International Edn.; 1957.

MMT2C10: OPERATIONS RESEARCH

No. of Credits: 4
No. of hours of Lectures/week: 5

TEXT : K.V. MITAL; C. MOHAN., OPTIMIZATION METHODS IN OPERATIONS RESEARCH AND SYSTEMS ANALYSIS(3rd. Edn.), New Age International(P) Ltd., 1996.
(Pre requisites : A basic course in calculus and Linear Algebra)
Module 1
Convex Functions; Linear Programming [Chapter 2 : Sections 11 to 12 ; Chapter 3 : Sections 1 to 15,17 from the text]

Module 2

Linear Programming (contd.); Transportation Problem [Chapter 3 : Sections 18 to 20, 22; Chapter 4 Sections 1 to 11, 13 from the text]

Module 3

Integer Programming; Sensitivity Analysis [Chapter 6: Sections 1 to 9; Chapter 7 Sections 1 to 10 from the text] Flow and Potential in Networks; Theory of Games [Chapter 5 : Sections 1 to 4, 6 7; Chapter 12 : all Sections]

References

[1] R.L. Ackoff and M.W. Sasioni: Fundamentals of Operations Research; Wiley Eastern Ltd. New Delhi; 1991
[2] C.S. Beightler, D.T. Philiphs and D.J. Wilde: Foundations of optimization(2nd Edn.); Prentice Hall of India, Delhi; 1979
[3] G. Hadley: Linear Programming; Addison-Wesley Pub Co Reading, Mass; 1975
[4] G. Hadley: Non-linear and Dynamic Programming; Wiley Eastern Pub Co. Reading, Mass; 1964
[5] H.S. Kasana and K.D. Kumar: Introductory Operations Research-Theory and Applications; Springer-Verlag; 2003
[6] R. Panneerselvam: Operations Research; PHI, New Delhi(Fifth printing); 2004
[7] Ravindran, D.T. Philips and J.J. Solberg: Operations Research-Principles and Practices(2nd Edn.); John Wiley \& Sons; 2000
[8] G. Strang: Linear Algebra and Its Applications(4th Edn.); Cengage Learning; 2006
[9] Hamdy A. Taha: Operations Research- An Introduction(4th Edn.); Macmillan Pub Co. Delhi; 1989.

MMT2AO2: TECHNICAL WRITING WITH ETEX (PCC)

No. of Credits: 4

1. Installation of the software ATEX
2. Understanding LATEX compilation
3. Basic Syntex, Writing equations, Matrix, Tables
4. Page Layout : Titles, Abstract, Chapters, Sections, Equation references, citation.
5. List making environments
6. Table of contents, Generating new commands
7. Figure handling, numbering, List of figures, List of tables, Generating bibliography and index
8. Beamer presentation
9. Pstricks: drawing simple pictures, Function plotting, drawing pictures with nodes
10. Tikz:drawing simple pictures, Function plotting, drawing pictures with nodes

References

[1] L. Lamport: A Document Preparation System, User's Guide and Reference Manual, Addison-Wesley, New York, second edition, 1994.
[2] M.R.C. van Dongen:EATEX and Friends, Springer-Verlag Berlin Heidelberg 2012.
[3] Stefan Kottwitz: LATEX Cookbook, Packt Publishing 2015.
[4] David F. Griffths and Desmond J. Higham: Learning LETEX (second edition), Siam 2016.
[5] George Gratzer: Practical LATEX, Springer 2015.
[6] W. Snow: TEXfor the Beginner. Addison-Wesley, Reading, 1992
[7] D. E. Knuth:The TEXBook. Addison-Wesley, Reading, second edition, 1986
[8] M. Goossens, F. Mittelbach, and A. Samarin :The LTTEXCompanion. AddisonWesley, Reading, MA, second edition, 2000.
[9] M. Goossens and S. Rahtz:TheEATEXWeb Companion: Integrating TEX, HTML, and XML. Addison-Wesley Series on Tools and Techniques for Computer Typesetting. Addison-Wesley, Reading, MA, 1999.
[10] M. Goossens, S. Rahtz, and F. Mittelbach: The LATEXGraphics Companion: Illustrating Documents with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and PostScript. Addison-Wesley Series on Tools and Techniques for Computer Typesetting. Addison-Wesley, New York, 1997.

SEMESTER 2 (PCC)

MMT2Ao3: PROGRAMMING WITH SCILAB (PCC)

No. of Credits: 4

1. Installation of the software Scilab.
2. Basic syntax, Mathematical Operators, Predefined constants, Built in functions.
3. Complex numbers, Polynomials, Vectors, Matrix. Handling these data structures using built in functions
4. Programming
(a) Functions
(b) Loops
(c) Conditional statements
(d) Handling .sci files
5. Installation of additional packages e.g. "optimization"
6. Graphics handling
(a) $2 \mathrm{D}, 3 \mathrm{D}$
(b) Generating .jpg files
(c) Function plotting
(d) Data plotting
7. Applications
(a) Numerical Linear Algebra (Solving linear equations, eigenvalues etc.)
(b) Numerical Analysis : iterative methods
(c) ODE: plotting solution curves

References

[1] Claude Gomez, Carey Bunks Jean-Philippe Chancelier Fran ois Delebecque Mauriee Goursat Ramine Nikoukhah Serge Steer : Engineering and Scientific Computing with Scilab, Springer-Science, LLC, 1998.
[2] Sandeep Nagar: Introduction to Scilab For Engineers and Scientists, Apress, 2017.

MMT2AO4: SCIENTIFIC PROGRAMMING WITH C++ (PCC)

No. of Credits: 4

[1] C++ Programming Basics
[2] Loops and Decisions
[3] Structures
[4] Functions
[5] Objects and Classes (Sections: A Simple class, C++ Objects as Physical Objects, C++ Objects as data Types and Constructors Only)
[6] Arrays: (Sections: Array Fundamentals, Function Declared with array Arguments Only)
[7] Algorithms
[8] Solutions of Algebraic Equations
[9] Interpolation
[10]Differentiation, Integration
[11] Solutions of Differential equations

References

1) ROBERT LAFORE, OBJECT ORIENTED PROGRAMMING IN C++(3rd Edn.), Galgotia Publications(Pvt. Ltd.), Ansari Road, New Delhi, 2007.
2) V. RAJARAMAN, COMPUTER ORIENTED NUMERICAL METHODS, Prentice Hall of India, New Delhi.
3) S.D. Conte and Carl De Boor: Elementary Numerical Analysis-an Algorithmic Approach(3rd Edn.); Mc Graw Hill book company, New Delhi, 2007.
4) K. Sankara Rao: Numerical Methods for Scientists and Engineers; Prentice hall of India, New Delhi, 2007.
5) Carl E. Froberg: Introduction to Numerical Analysis(2nd Edn.); Addison Wesley Pub. Co., 1974.
6) A Ralston: A First Course in Numerical Analysis; Mc Graw Hill Book Company, 1978
7) John H Mathews: Numerical Methods for Mathematics, Science and Engg; Prentice Hall of India, New Delhi, 1992.
8) Kunthe D.E: The Art of Computer Programming-VOL I: Fundamental Algorithms; Addison Wesley Narosa, New Delhi, 1997.
9) Herbert Schildt: C++: The Complete Reference(3rd Edn.); Mc Graw-Hill Pub. Co. Ltd., New Delhi, 1982.
10) Yashavant P. Kanetkar: Let Us C++; BPB Publications, New Delhi, 2003.
11) E. Balagurusami: Object Oriented Programming with C++; Tata Mc. Graw - Hill Publishing Co. Ltd., New Delhi, 2013.
12) Schaum Series: Programming in C++; Tata Mc Graw-Hill Publishing Co. Ltd., New Delhi, 2000.

MMT3C11: MULTIVARIABLE CALCULUS AND GEOMETRY

No. of Credits: 4

No. of hours of Lectures/week: 5

TEXT 1 : RUDIN W., PRINCIPLES OF MATHEMATICAL ANALYSIS, (3rd Edn.), Mc. Graw Hill, 1986.

TEXT 2: ANDREW PRESSLEY, ELEMENTARY DIFFERENTIAL GEOMETRY(2nd Edn.), Springer-Verlag, 2010.

Module 1

Functions of Several Variables Linear Transformations, Differentiation, The Contraction Principle, The Inverse Function Theorem, the Implicit Function Theorem. [Chapter 9 Sections 1-29, 33-37 from Text-1]

Module 2

What is a curve? Arc-length, Reparametrization, Closed curves, Level curves versus parametrized curves. Curvature, Plane curves, Space curves What is a surface, Smooth surfaces, Smooth maps, Tangents and derivatives, Normals and orientability. [Chapter 1 Sections 1-5, Chapter 2 Sections 1-3, Chapter 4 Sections $1-5$ from Text - 2]

Module 3

Applications of the inverse function theorem, Lengths of curves on surfaces,, The second fundamental form, The Gauss and Weingarten maps, Normal and geodesic curvatures. Gaussian and mean curvatures, Principal curvatures of a surface. [Chapter 5 \& 6, Chapter 6 Sections 1 Chapter 7 Sections 1-3, Chapter 8 Sections 1 - 2 from Text - 2]

References

[1] M. P. do Carmo: Differential Geometry of Curves and Surfaces;
[2] W. Klingenberg: A course in Differential Geometry;
[3] J. R. Munkres: Analysis on Manifolds; Westview Press; 1997
[4] C. C. Pugh: Real Mathematical Analysis, Springer; 2010
[5] M. Spivak: A Comprehensive Introduction to Differential Geometry-Vol. I; Publish or Perish, Boston; 1970
[6] M. Spivak: Calculus on Manifolds; Westview Press; 1971
[7] V.A. Zorich: Mathematical Analysis-I; Springer; 2008

MMT3C12: COMPLEX ANALYSIS

No. of Credits: 4

No. of hours of Lectures/week: 5

TEXT : JOHN B. CONWAY, FUNCTIONS OF ONE COMPLEX VARIABLE(2nd Edn.); Springer International Student Edition; 1992

Module 1

The extended plane and its spherical representation, Power series, Analytic functions, Analytic functions as mappings, Mobius transformations, Riemann-Stieltijes integrals [Chapt. I Section 6;,Chapt. III Sections 1, 2 and 3; Chapter IV Section 1]

Module 2

Power series representation of analytic functions, Zeros of an analytic function, The index of a closed curve, Cauchy's Theorem and Integral Formula, The homotopic version of Cauchys Theorem and simple connectivity, Counting zeros; theOpen Mapping Theorem and Goursats Theorem.

Module 3

The classification of singularities, Residues, The Argument Principle and The Maximum Principle, Schwarz's Lemma, Convex functions and Hadamards three circles theorem [Chapt. V: Sections 1, 2, 3; Chapter VI Sections 1, 2, 3]

References

[1] H. Cartan: Elementary Theory of analytic functions of one or several variables; Addison - Wesley Pub. Co.; 1973
[2] T.W. Gamelin: Complex Analysis; Springer-Verlag, NY Inc.; 2001
[3] T.O. Moore and E.H. Hadlock: Complex Analysis, Series in PureMathematicsVol. 9; World Scientific; 1991
[4] L. Pennisi: Elements of Complex Variables(2nd Edn.); Holf, Rinehart \& Winston; 1976
[5] R. Remmert: Theory of Complex Functions; UTM , Springer-Verlag, NY; 1991
[6] W. Rudin: Real and Complex Analysis(3rd Edn.); Mc Graw - Hill International Editions; 1987
[7] H. Sliverman: Complex Variables; Houghton Mifflin Co. Boston; 1975.

MMT3C13: FUNCTIONAL ANALYSIS

No. of Credits: 4
No. of hours of Lectures/week: 5

TEXT : LIMAYE B.V, FUNCTIONAL ANALYSIS, (2nd Edn.) New Age International Ltd, Publishers, New Delhi, Bangalore (1996)

Module 1

Metric spaces and Continuous Functions (section 3, 3.1 to 3.4 , 3.11 to 3.13 (without proof)), Lp spaces, Fourier series and Integrals (section 4.5 to4.7, 4.8 to 4.11 (without proof)), Normed spaces (section 5) Continuity of linear maps (section 6).

Module 2

Hahn-Banach Theorems (section 7, omit Banach limits) Banach spaces (section 8) Uniform Boundedness Principle (section 9 (upto and including 9.3), omit Quadrature Formulae and Matrix Transformations and Summability Methods).

Module 3

Closed Graph and Open Mapping Theorems (section 10), Bounded Inverse Theorem (section 11.1), Inner product spaces(Section 21 (upto and including 21.2)), Orthonormal sets (Section 22 (upto and including 22.5) (omit 22.3)).

References

[1] G. Bachman and L. Narici: Functional Analysis; Academic Press, NY; 1970
[2] J. B. Conway: Functional Analysis; Narosa Pub House, New Delhi; 1978
[3] J. Dieudonne: Foundations of Modern analysis; Academic Press; 1969
[4] W. Dunford and J. Schwartz: Linear Operators - Part 1: General Theory; John Wiley \& Sons; 1958
[5] Kolmogorov and S.V. Fomin: Elements of the Theory of Functions and Functional Analysis (English translation); Graylock Press, Rochaster NY; 1972
[6] E. Kreyszig: Introductory Functional Analysis with applications; John Wiley \& Sons; 1978
[7] F. Riesz and B. Nagy: Functional analysis; Frederick Unger NY; 1955
[8] W. Rudin: Functional Analysis; TMH edition; 1978
[9] W. Rudin: Real and Complex Analysis(3rd Edn.); McGraw-Hill; 1987
[10] Yuli Eidelman,Vitali Milman and Antonis Tsolomitis, Functional analysis An Introduction, Graduate Studies in Mathematics, Vol. 66 American Mathematical Society, 2004.

MMT3C14: PDE and Integral Equations

No. of Credits: 4
No. of hours of Lectures/week: 5

TEXT 1: AN INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS, YEHUDA PINCHOVER AND JACOB RUBINSTEIN, Cambridge University Press

TEXT 2: HILDEBRAND, F.B., METHODS OF APPLIED MATHEMATICS (2nd Edn.), Prentice-Hall of India, New Delhi, 1972.

Module 1

First-order equations: Introduction, Quasilinear equations, The method of characteristics, Examples of the characteristics method, The existence and uniqueness theorem, The Lagrange method, Conservation laws and shock waves, The eikonal equation, Gen eral nonlinear equations

Second-order linear equations in two independent variables: Introduction, Classification, Canonical form of hyperbolic equations, Canonical form of parabolic equations, Canonical form of elliptic equations
The one-dimensional wave equation: Introduction, Canonical form and general solution, The Cauchy problem and d'Alemberts formula, Domain of dependence and region of influence, The Cauchy problem for the nonhomogeneous wave equation [Chapter 2, 3 and 4 from Text 1]

Module 2

The method of separation of variables: Introduction, Heat equation: homogeneous boundary condition, Separation of variables for the wave equation, Separation of variables for nonhomogeneous equations, The energy method and uniqueness, Further applications of the heat equation
Elliptic equations: Introduction, Basic properties of elliptic problems, The maximum principle, Applications of the maximum principle, Greens identities, The maximum principle for the heat equation, Separation of variables for elliptic problems, Poissons formula [Chapter 5 and 7 from Text 1]

Module 3

Integral Equations: Introduction, Relations between differential and integral equations, The Green's functions, Fredholom equations with separable kernels, Illustrative examples, Hilbert- Schmidt Theory, Iterative methods for solving Equations of the second kind. The Newmann Series, Fredholm Theory [Sections 3.1 3.3, 3.6 3.11 from the Text 2]

References

[1] Amaranath T.:Partial Differential Equations, Narosa, New Delhi, 1997.
[2] A. Chakrabarti: Elements of ordinary Differential Equations and special functions; Wiley Eastern Ltd, New Delhi; 1990
[3] E.A. Coddington: An Introduction to Ordinary Differential Equtions Printice Hall of India ,New Delhi; 1974
[4] R. Courant and D.Hilbert: Methods of Mathematical Physics-Vol I; Wiley Eastern Reprint; 1975
[5] P. Hartman: Ordinary Differential Equations; John Wiley \& Sons; 1964
[6] F. John: Partial Differential Equations; Narosa Pub House New Delhi; 1986
[7] Phoolan Prasad Renuka Ravindran: Partial Differential Equations; Wiley Eastern Ltd, New Delhi; 1985
[8] L.S. Pontriyagin: A course in ordinary Differential Equations; Hindustan Pub. Corporation, Delhi; 1967
[9] I. Sneddon: Elements of Partial Differential Equations; McGraw-Hill International Edn.; 1957.

MMT3Eo2: CODING THEORY
 No. of Credits: 3
 No. of hours of Lectures/week: 5

TEXT : D.J. Hoffman, Coding Theory : The Essentials, Mareel Dekker Inc, 1991.

Module 1

Detecting and correcting error patterns, Information rate, the effects of error detection and correction, finding the most likely code word transmitted, weight and distance, MLD, Error detecting and correcting codes. linear codes, bases for $\mathrm{C}=<\mathrm{S}>$ and $\mathrm{C} \perp$, generating and parity cheek matrices, equivalent codes, distance of linear code, MLD for a linear code, reliability of IMLD for linear codes[Chapter 1 \& Chapter 2]

Module 2

Perfect codes, hamming code, Extended code, Golay code and extended Golay code, Red Hulles codes[Chapter 3: Sections 1 to 8].

Module 3

Cyclic linear codes, polynomial encoding and decoding, dual cyclic codes, BCH linear codes, Cyclic Hamming code, Decoding 2 error correcting BCH codes[Chapter 4 and Appendix A of the chapter, Chapter 5]

References

[1] E.R. Berlekamp: Algebraic coding theory, Mc Graw Hill, 1968
[2] P.J. Cameron and J.H. Van Lint: Fundamentals of Wavelets Theory Algorithms and Applications, John Wiley and Sons, Newyork. , 1999.
[3] Yves Nievergelt: Graphs, codes and designs, CUP.
[4] H. Hill : A first Course in Coding Theory, OUP, 1986.

MMT3EO1: CRYPTOGRAPHY

No. of Credits: 3
 No. of hours of Lectures/week: 5

TEXT : Douglas R. Stinson, Cryptography Theory and Practice, Chapman \& Hall, 2nd Edition.

Module 1

Classical Cryptography: Some Simple Cryptosystems, Shift Cipher, Substitution Cipher, Affine Cipher, Vigenere Cipher, Hill Cipher, Permutation Cipher, Stream Ciphers. Cryptanalysis of the Affine, Substitution, Vigenere, Hill and LFSR Stream Cipher.

Module 2

Shannons Theory:- Elementary Probability Theory, Perfect Secrecy, Entropy, Huffman Encodings, Properties of Entropy, Spurious Keys and Unicity Distance, Product Cryptosystem.

Module 3

Block Ciphers: Substitution Permutation Networks, Linear Cryptanalysis, Differential Cryptanalysis, Data Encryption Standard (DES), Advanced Encryption Standard (AES). Cryptographic Hash Functions: Hash Functions and Data integrity, Security of Hash Functions, iterated hash functions- MD5, SHA 1, Message Authentication Codes, Unconditionally Secure MAC s. [Chapter 1 : Section 1.1(1.1 .1 to 1.1.7), Section 1.2 (1.2 .1 to 1.2.5) ; Chapter 2 : Sections 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7; Chapter 3 : Sections 3.1, 3.2, 3.3 (3.3 .1 to 3.3 .3), Sect.3.4, Sect. 3.5 (3.5.1,3.5.2), Sect.3.6(3.6.1, 3.6.2); Chapter 4 : Sections 4.1, 4.2 (4.2.1 to 4.2.3), Section 4.3 (4.3.1, 4.3.2), Section 4.4(4.4.1, 4.4.2), Section 4.5 (4.5.1, 4.5.2)]

References

[1] Jeffrey Hoffstein: Jill Pipher, Joseph H. Silverman, An Introduction to Mathematical Cryptography, Springer International Edition.
[2] H. Deffs \& H. Knebl: Introduction to Cryptography, Springer Verlag, 2002.
[3] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone: Handbook of Applied Cryptography, CRC Press, 1996.
[4] William Stallings: Cryptography and Network Security Principles and Practice, Third Edition, Prentice-hall India, 2003.

MMT3Eo3: MEASURE AND INTEGRATION
 No. of Credits: 3
 No. of hours of Lectures/week: 5

TEXT : WALTER RUDIN, REAL AND COMPLEX ANALYSIS (3rd Edn.), Mc.Graw- Hill International Edn., New Delhi, 1987.

Module 1

The concept of measurability, Simple functions, Elementary properties of measures, Arithmetic in [o,infinity], Integration of Positive Functions, Integration of Complex Functions, The Role Played by Sets of Measure zero, Topological Preliminaries, The Riesz Representation Theorem. (Chap. 1, Sections : 1.2 to 1.41 Chap. 2, Sections : 2.3 to 2.14)

Module 2

Regularity Properties of Borel Measures, Lebesgue Measure, Continuity Properties of Measurable Functions. Total Variation, Absolute Continuity, Consequences of Radon Nikodym Theorem. (Chap. 2, Sections : 2.15 to 2.25 Chap. 6, Sections : 6.1 to 6.14)

Module 3

Bounded Linear Functionals on L^{P}, The Riesz Representation Theorem, Measurability on Cartesian Products, Product Measures, The Fubini Theorem, Completion of Product Measures. (Chap. 6, Sections : 6.15 to 6.19, Chap. 8, Sections : 8.1 to 8.11)

References

[1] P.R. Halmos : Measure Theory, Narosa Pub. House New Delhi (1981) Second Reprint.
[2] H.L. Roydon : Real Analysis, Macmillan International Edition (1988) Third Edition.
[3] E.Hewitt \& K. Stromberg : Real and Abstract Analysis, Narosa Pub. House New Delhi (1978).
[4] A.E.Taylor: General Theory of Functions and Integration, Blaidsell Publishing Co NY (1965).
[5] G.De Barra : Measure Theory and Integration, Wiley Eastern Ltd. Bangalore(1981).

MMT3E04: PROBABILITY THEORY
 No. of Credits: 3
 No. of hours of Lectures/week: 5

TEXT : D An Introduction to Probability Theory and Statistics (Second Edition), By Vijay K. Rohatgi and A.K. MD. Ehsanes Saleh, John Wiley Sons Inc. New York

Module 1

Random Variables and Their Probability Distributions Random Variables. Probability Distribution of a random Variable. Discrete and Continuous Random Variables. Functions of a random Variable. Chapter 2 of Text. (Sections 2.1-2.5) Moments and Generating Functions. Moments of a distribution Function. Generating Functions. Some Moment Inequalities. Chapter 3 of Text. (Sections 3.1-3.4)

Module 2

Multiple Random Variables. Multiple random Variables. Independent Random Variables. Functions of several Random variables. Covariance, Correlation and Moments. Conditional Expectations Order statistics and their Distributions. Chapter 4 of Text. (Sections 4.1-4.7)

Module 3

Limit Theorems. Modes of Convergence. Weak law of Large Numbers. Strong Law of large Numbers. Limiting Moment Generating Functions. Central Limit Theorem. Chapter 6 of Text. (Sections 6.1-6.6)

References

[1] B.R. Bhat: MODERN PROBABILITY THEORY (Second Edn.) Wiley Eastern Limited, Delhi (1988).
[2] K.L. Chung: Elementary Probability Theory with Stochastic Processes Narosa Pub House, New Delhi (1980).
[3] W.E.Feller: An Introduction to Probability Theory and its Applications Vols I \& IIJohn Wiley \& Sons, (1968) and (1971).
[4] Rukmangadachari E.: Probability and Statistics, Pearson (2012).
[5] Robert V Hogg, Allen Craig \& Joseph W McKean: Introduction to Mathematical Statistics (Sixth Edn.), Pearson 2005.

MMT4C15: ADVANCED FUNCTIONAL ANALYSIS

No. of Credits: 4

No. of hours of Lectures/week: 5

TEXT : LIMAYE B.V, FUNCTIONAL ANALYSIS, (2nd Edn.) New Age International Ltd, Publishers, New Delhi, Bangalore (1996)

Module 1

Spectrum of a Bounded Operator (Section 12), Duals and Transposes (section 13, upto and including 13.6), Weak Convergence (Section 15(upto and including 15.2(c))); Reflexivity (section 16 (16.1 to $16.2,16.4$ (a) and (b), 16.5(without proof), 16.6(without proof), Omit 16.3).

Module 2

Compact Linear Map (Section 17(upto and including 17.3)); Spectrum of a compact operator (Section 18(18.1 to 18.5, 18.7(a)); Projection and Riesz Representation Theorems (section 24 (up to and including 24.6)).

Module 3

Bounded Operators and Adjoints (Section 25(omit 25.4(b))); Normal, Unitary and Self Adjoint Operators (section 26, omit Fourier-Plancherel Transform), Spectrum and Numerical Range (section 27(omit 27.6)); Compact self Adjoint Operators (section 28 (omit 28.3(b), 28.7 and 28.8(b))).

References

[1] Yuli Eidelman,Vitali Milman and Antonis Tsolomitis, Functional analysis An Introduction, Graduate Studies in Mathematics Vol. 66 American Mathematical Society 2004.
[2] R. Bhatia: Notes on Functional Analysis TRIM series, Hindustan Book Agency
[3] Kesavan S: Functional Analysis TRIM series, Hindustan Book Agency
[4] S David Promislow: A First Course in Functional Analysis, John wiley \& Sons, INC., (2008)
[5] Sunder V.S: Functional Analysis TRIM Series, Hindustan Book Agency
[6] George Bachman \&LawrenceNarici: Functional Analysis Academic Press, NY (1970)
[7] E.Kreyszig: Introductory Functional Analysis with Applications; John Wiley and Sons; 1978
[8] J.B.Conway: Functional Analysis; Narosa Pub House New Delhi; 1978
[9] Walter Rudin: Functional Analysis TMH edition (1978)
[10] J.Dieudonne: Foundations of Modern Analysis Academic Press (1969).

MMT4Eo5: ADVANCED COMPLEX ANALYSIS
 No. of Credits: 3
 No. of hours of Lectures/week: 5

TEXT : JOHN B. CONWAY, FUNCTIONS OF ONE COMPLEX VARIABLE(2nd Edn.),

Springer International Student Edition, 1973.

Module 1

The Space of continuous functions $\mathrm{C}(\mathrm{tt}, \Omega)$, Spaces of Analytic functions, Spaces of meromorphic functions, The Riemann Mapping theorem , Weierstrass Factorization Theorem [Chapter. VII: Sections 1, 2, 3,4 and 5]

Module 2

Factorization of the sine function, Gamma function, The Riemann Zeta function, Runge's theorem, Simple connectedness
[Chapt. VII: Sections 6, 7 and 8, Chapter VIII Sections 1 and 2]

Module 3

Mittage-Leffler's Theorem, Schwarz reflexion principle, Analytic continuation along a path, Monotromy theorem, Jensen's formula, The Genus and order of an entire function, Statement of Hadamards factorization theorem [Chapt. VIII: Section 3, Chapter 9 sections 1,2 and 3, Chapter 11 sections 1, 2 , Section 3 Statement of Hadamards factorization theorem only]

References

[1] Cartan H: Elementary Theory of Analytic Functions of one or Several Variables, Addison-Wesley Pub. Co. (1973).
[2] Conway J.B: Functions of One Complex Variable, Narosa Pub. Co, New Delhi (1973).
[3] Moore T.O. \& Hadlock E.H: Complex Analysis, Series in Pure Mathematics - Vol. 9. World Scientific, (1991).
[4] Pennisi L: Elements of Complex Variables, Holf, Rinehart \& Winston, 2nd Edn. (1976).
[5] Rudin W: Real and Complex Analysis, 3rd Edn. Mc Graw-Hill International Edn. (1987).
[6] Silverman H: Compex Variables, Houghton Mifflin Co. Boston (1975).
[7] Remmert R: Theory of Complex Functions, UTM, Springer- verlag, NY, (1991).

MMT4Eo6: ALGEBRAIC NUMBER THEORY

No. of Credits: 3

No. of hours of Lectures/week: 5

TEXT : I. N. STEWART \& D.O. TALL, ALGEBRAIC NUMBER THEORY, (2nd Edn.), Chapman \& Hall, (1987)

Module 1

Symmetric polynomials, Modules, Free abelian groups, Algebraic Numbers, Conjugates and Discriminants, Algebraic Integers, Integral Bases, Norms and Traces, Rings of Integers, Quadratic Fields, Cyclotomic Fields. [Chapter1, Sections 1.4 to 1.6; Chapter 2, Sections 2.1 to 2.6; Chapter 3, Sections 3.1 and 3.2 from the text]

Module 2

Historical background, Trivial Factorizations, Factorization into Irreducibles, Examples of Nonunique Factorization into Irreducibles, Prime Factorization, Euclidean Domains, Eucidean Quadratic fields Ideals Historical background, Prime Factorization of Ideals, The norm of an ideal [Chapter 4, Sections 4.1 to 4.7, Chapter 5, Sections 5.1 to 5.3.]

Module 3

Lattices, The Quotient Torus, Minkowski theorem, The Space Lst, The Class-Group An Existence Theorem, Finiteness of the Class-Group, Factorization of a Rational Prime, Fermats Last Theorem Some history, Elementary Considerations, Kummers Lemma, Kummers Theorem. [Chapter 6, Chapter 7, Section 7.1 Chapter 8, Chapter 9, Sections 9.1 to 9.3, Chapter 10. Section 10.1, Chapter 11: 11.1 to 11.4.]

References

[1] P. Samuel : Theory of Algebraic Numbers, Herman Paris Houghton Mifflin, NY, (1975)
[2] S. Lang : Algebraic Number Theory, Addison Wesley Pub Co., Reading, Mass, (1970)
[3] bf D. Marcus : Number Fields, Universitext, Springer Verlag, NY, (1976)
[4] 4T.I.FR. Pamphlet No: 4 : Algebraic Number Theory (Bombay, 1966)
[5] Harvey Cohn : Advanced Number Theory, Dover Publications Inc., NY, (1980).
[6] Andre Weil : Basic Number Theory, (3rd Edn.), Springer Verlag, NY, (1974)
[7] G.H. Hardy and E.M. Wright : An Introduction to the Theory of Numbers, Oxford University Press.
[8] Z.I. Borevich \& I.R.Shafarevich : Number Theory, Academic Press, NY 1966.
[9] Esmonde \& Ram Murthy : Problems in Algebraic Number Theory, Springer Verlag

MMT4EO7: ALGEBRAIC TOPOLOGY

No. of Credits: 3

No. of hours of Lectures/week: 5

TEXT : FRED H. CROOM., BASIC CONCEPTS OF ALGEBRAIC TOPOLOGY, UTM, Springer - Verlag, NY, 1978.

(Pre requisites : Fundamentals of group theory and Topology)

Module 1

Geometric Complexes and Polyhedra: Introduction. Examples, Geometric Complexes and Polyhedra, Orientation of geometric complexes. Simplicial Homology Groups: Chains, cycles, Boundaries and homology groups, Examples of homology groups; The structure of homology groups; [Chapter 1: Sections 1.1 to 1.4; Chapter 2: Sections 2.1 to 2.3 from the text].

Module 2

Simplicial Homology Groups (Contd.): The Euler Poincare's Theorem; Pseudomani- folds and the homology groups of Sn. Simplicial Approximation: Introduction, Simplicial approximation, Induced homomorphisms on the Homology groups, The Brouwer fixed point theorem and related results [Chapter 2: Sections 2.4, 2.5; Chapter 3: Sections 3.1 to 3.4 from the text]

Module 3

The Fundamental Group: Introduction, Homotopic Paths and the Fundamental Group, The Covering Homotopy Property for S1, Examples of Fundamental Groups. [Chapter 4: Sections 4.1 to 4.4 from the text]

References

[1] Eilenberg S, Steenrod N.: Foundations of Algebraic Topology; Princeton Univ. Press; 1952.
[2] S.T. Hu: Homology Theory; Holden-Day; 1965.
[3] Massey W.S.: Algebraic Topology : An Introduction; Springer Verlag NY; 1977.
[4] C.T.C. Wall: A Geometric Introduction to Topology; Addison-Wesley Pub. Co. Reading Mass; 1972

MMT4Eo8: COMMUTATIVE ALGEBRA

No. of Credits: 3

No. of hours of Lectures/week: 5

TEXT : ATIYAH M.F., MACKONALD I. G., INTRODUCTION TO COMMUTATIVE ALGEBRA, Addison Wesley, NY, 1969.

Module 1

Rings and Ideals, Modules [Chapters I and II from the text]

Module 2

Rings and Modules of Fractions, Primary Decomposition [Chapters III \& IV from the text]

Module 3

Integral Dependence and Valuation, Chain conditions, Noetherian rings, Artinian rings [Chapters V, VI, VII \& VIII from the text]

References

[1] N. Bourbaki: Commutative Algebra; Paris - Hermann; 1961
[2] D. Burton: A First Course in Rings and Idials; Addison - Wesley; 1970
[3] N. S. Gopalakrishnan: Commutative Algebra; Oxonian Press; 1984
[4] T.W. Hungerford: Algebra; Springer Verlag GTM 73(4th Printing); 1987
[5] D. G. Northcott: Ideal Theory; Cambridge University Press; 1953.
[6] O. Zariski, P.Samuel: Commutative Algebra-Vols. I \& II; Van Nostrand, Princeton; 1960

MMT4EO9: DIFFERENTIAL GEOMETRY

No. of Credits: 3

No. of hours of Lectures/week: 5

TEXT : J.A.THORPE : ELEMENTARY TOPICS IN DIFFERENTIAL GEOMETRY

Module 1

Graphs and Level Set, Vector fields, The Tangent Space, Surfaces, Vector Fields on Surfaces, Orientation. The Gauss Map. [Chapters : 1,2,3,4,5,6 from the text.]

Module 2

Geodesics, Parallel Transport, The Weingarten Map, Curvature of Plane Curves, Arc Length and Line Integrals. [Chapters : 7,8,9,10,11 from the text].

Module 3

Curvature of Surfaces, Parametrized Surfaces, Local Equivalence of Surfaces and Parametrized Surfaces. [Chapters 12,14,15 from the text]

References

[1] W.L. Burke : Applied Differential Geometry, Cambridge University Press (1985).
[2] M. de Carmo : Differential Geometry of Curves and Surfaces, Prentice Hall Inc Englewood Cliffs NJ (1976).
[3] V. Grilleman and A. Pollack : Differential Topology, Prentice Hall Inc Englewood Cliffs NJ (1974).
[4] B. O'Neil : Elementary Differential Geometry, Academic Press NY (1966).
[5] M. Spivak : A Comprehensive Introduction to Differential, Geometry, (Volumes 1 to 5), Publish or Perish, Boston (1970, 75).
[6] R. Millmen and G. Parker : Elements of Differential Geometry, Prentice Hall Inc Englewood Cliffs NJ (1977).
[7] I. Singer and J.A. Thorpe : Lecture Notes on Elementary Topology and Geometry, UTM, Springer Verlag, NY (1967).

MMT4E10: FLUID DYNAMICS No. of Credits: 3 No. of hours of Lectures/week: 5

TEXT : L.M. MILNE-THOMSON, THEORETICAL HYDRODYNAMICS, (Fifth Edition)
Mac Millan Press, London, 1979.

Module 1

EQUATIONS OF MOTION : Differentiation w.r.t. the time, The equation of continuity Boundary condition (Kinematical and Physical), Rate of change of linear momentum, The equation of motion of an invicid fluid, Conservative forces, Steady motion, The energy equation, Rate of change of circulation, Vortex motion, Permanence of vorticity, Pressure equation, Connectivity, Acyclic and cyclic irrotational motion, Kinetic energy of liquid, Kelvins minimum energy theorem. TWO-DIMENSIONAL MOTION : Motion in two- dimensions, Intrinsic expression for the vorticity; The rate of change of vorticity; Intrinsic equations of steady motion; Stream function; Velocity derived from the stream-function; Rankine's method; The stream function of a uniform stream; Vector expression for velocity and vorticity; Equation satisfied by stream function; The pressure equation; Stagnation points; The velocity potential of a liquid; The equation satisfied by the velocity potential. [Chapter III: Sections 3.10, 3.20, $3.30,3.31,3.40,3.41,3.43,3.45,3.50,3.51,3.52,3.53,3.60,3.70,3.71,3.72,3.73$. Chapter IV :

Module 2

All Sections.]
STREAMING MOTIONS : Complex potential; The complex velocity stagnation points, The speed, The equations of the streamlines, The circle theorem, Streaming motion past a circular cylinder; The dividing streamline, The pressure distribution on the cylinder, Cavitation, Rigid boundaries and the circle theorem, The Joukowski transformation, Theorem of Blasius. AEROFOILS: Circulation about a circular cylinder, The circulation between concentric cylinders, Streaming and circulation for a circular cylinder, The aerofoil, Further investigations of the Joukowski transformation Geometrical construction for the transformation, The theorem of Kutta and Joukowski. [Chaper VI : Sections 6.0, 6.01, 6.02, 6.03, 6.05, 6.21, 6.22, 6.23, 6.24, 6.25, 6.30, 6.41. Chapter VII: Sections 7.10, 7.11, 7.12, 7.20, 7.30, 7.31, 7.45.]

Module 3

SOURCES AND SINKS: Two dimensional sources, The complex potential for a simple source, Combination of sources and streams, Source and sink of equal strengths Doublet, Source and equal sink in a stream, The method of images, Effect on a wall of a source parallel to the wall, General method for images in a plane, Image of a doublet in a plane, Sources in conformal transformation Source in an angle between two walls, Source outside a circular cylinder, The force exerted on a circular cylinder by a source. STKOKES' STREAM FUNCTION: Axisymmetrical motions Stokes stream function, Simple source, Uniform stream, Source in a uniform stream, Finite line source, Airship forms, Source and equal sink - Doublet; Rankin's solids. [Chapter VIII. Sections 8.10, 8.12, 8.20, 8.22, 8.23, 8.30, 8.40, 8.41, 8.42, 8.43, 8.50,
8.51, 8.60, 8.61, 8.62. Chapter XVI. Sections 16.0, 16.1, 16.20, 16.22, 16.23, 16.24, 16.25, 16.26, 16.27]

References

[1] Von Mises and K.O. Friedrichs : Fluid Dynamics, Springer International Edition. Reprint, (1988)
[2] James EA John : Introduction to Fluid Mechanics (2nd Edn.), Prentice Hall of India , Delhi,(1983).
[3] Chorlten : Text Book of Fluid Dynamics, CBS Publishers, Delhi 1985
[4] A. R. Patterson : A First Course in Fluid Dynamics, Cambridge University Press 1987

MMT4E11: GRAPH THEORY No. of Credits: 3
 No. of hours of Lectures/week: 5

TEXT : J.A. Bondy and U.S.R.Murty : Graph Theory with applications. Macmillan.

Module 1

Basic concepts of Graph. Trees, Cut edges and Bonds, Cut vertices, Cayleys Formula, The Connector Problem, Connectivity, Blocks, Construction of Reliable Communication Networks, Euler Tours, Hamilton Cycles, The Chineese Postman Problem, The Travelling Salesman Problem.

Module 2

Matchings, Matchings and Coverings in Bipartite Graphs, Perfect Matchings, The Personnel Assignment Problem, Edge Chromatic Number, Vizings Theorem, The Timetabling Problem, Independent Sets, Ramseys Theorem

Module 3

Vertex Colouring-Chromatic Number, Brooks Theorem, Chromatic Polynomial, Girth and Chromatic Number, A Storage Problem, Plane and Planar Graphs, Dual Graphs, Eulers Formula, Bridges, Kuratowskis Theorem, The Five-Colour Theorem, Directed Graphs, Directed Paths, Directed Cycles.
[Chapter 2 Sections 2.1 (Definitions \& Statements only), 2.2, 2.3, 2.4, 2.5; Chapter 3 Sections 3.1, 3.2, 3.3; Chapter 4 Sections 4.1 (Definitions \& Statements only), 4.2, 4.3, 4.4; Chapter 5 Sections 5.1, 5.2, 5.3, 5.4; Chapter 6 Sections 6.1,6.2,6.3; Chapter 7 Sections 7.1, 7.2; Chapter 8 Sections 8.1, 8.2, 8.4, 8.5, 8.6; Chapter 9 Sections (9.1,9.2,9.3 Definitions \& Statements only), 9.4, 9.5, 9.6; Chapter 10 Sections 10.1, 10.2, 10.3.

References

[1] F. Harary : Graph Theory, Narosa publishers, Reprint 2013.
[2] Geir Agnarsson, Raymond Greenlaw: Graph Theory Modelling, Applications and Algorithms, Pearson Printice Hall, 2007.
[3] John Clark and Derek Allan Holton : A First look at Graph Theory, World Scientific (Singapore) in 1991 and Allied Publishers (India) in 1995
[4] R. Balakrishnan \& K. Ranganathan : A Text Book of Graph Theory, Springer Verlag, 2nd edition 2012.

MMT4E12: REPRESENTATION THEORY

No. of Credits: 3

No. of hours of Lectures/week: 5

TEXT : Walter Ledermann, Introduction to Group Characters(Second Edition).

Module 1

Introduction, G- modules, Characters, Reducibility, Permutation Representations, Complete reducibility, Schurs lemma, The commutant(endomorphism) algebra. (Sections: 1.1 to 1.8)

Module 2

Orthogonality relations, the group algebra, the character table, finite abelian groups, the lifting process, linear characters. (section: 2.1 to 2.6)

Module 3

Induced representations, reciprocity law, the alternating group A5, Normal sub- groups, Transitive groups, the symmetric group, induced characters of Sn. (Sections: 3.1 to 3.4 \& 4.1 to 4.3)

References

[1] C. W. Kurtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, John Wiley \& Sons, New York(1962)
[2] Faulton: The Reprsentation Theory of Finite Groups, Lecture Notes in Mathematics, No. 682, Springer 1978.
[3] C. Musli: Reprsentations of Finite Groups, Hindustan Book Agency, New Delhi (1993).
[4] I. Schur: Theory of Group Characters, Academic Press, London (1977).
[5] J.P. Serre: Linear Representation of Finite Groups, Graduate Text in Mathematics, Vol 42, Springer (1977).

MMT4E13: WAVELET THEORY
 No. of Credits: 3
 No. of hours of Lectures/week: 5

TEXT : Michael. W. Frazier, An Introduction to Wavelets through Linear Algebra, Springer, Newyork, 1999.

Module 1

The discrete Fourier transforms :Basic Properties of Discrete Fourier Transforms , Translation invariant Linear Transforms, The Fast Fourier Transforms. Wavelets on ZN.

Construction of wavelets on ZN - The First Stage, Construction of Wavelets on ZN : The Iteration Step.[Chapter 2: sections 2.1 to 2.3; Chapter 3: sections 3.1 and 3.2]

Module 2

Wavelets on Z : A2(Z), Complete orthonormal sets in Hilbert spaces ,L2([$\pi, \pi)$) and Fourier series, The Fourier Transform and convolution on A2(Z), First stage Wavelets on Z, Implementation and Examples.[Chapter 4: sections 4.1 to 4.6 and 4.7]

Module 3

Wavelets on R : $\mathrm{L} 2(\mathrm{R})$ and approximate identities , The Fourier transform on R , Multiresolution analysis and wavelets, Construction of MRA. [Chapter 5: sections 5.1 to 5.4]

References

[1] C.K. Chui : An introduction to wavelets, Academic Press,1992
[2] Jaideva. C. Goswami, Andrew K Chan: Fundamentals of Wavelets Theory Algorithms and Applications, John Wiley and Sons, Newyork. , 1999.
[3] Yves Nievergelt: Wavelets made easy, Birkhauser, Boston,1999.
[4] G. Bachman, L.Narici and E. Beckenstein : Fourier and wavelet analysis, Springer, 2006.

MMT4E14: COMPUTER ORIENTED NUMERICAL ANALYSIS No. of Credits: 3

No. of hours of Lectures/week: 5

Programming Language: Python

TEXT 1: A Byte of Python, Swaroop C H
TEXT 2: Numerical Methods, E Balagurusamy, Tata McGraw-Hill Publishing Company Limited, New Delhi.

Module 1

(Text Book 1, Text Book 2)

A quick review of preliminaries of computers, numerical computing, programming languages, Algorithms, flow charts, computer codes based on chapter 1, 2 and 3 of text book 2

Approximations and errors in computing: Significant Digits, Numerical Errors, Absolute and relative errors, convergence of iterative processes and error estimation. (Sections 4.2, 4.4, 4, 7, 4.11 and 4.12 of text book 2)

A quick review of chapters 1, 2 and 3 of Text Book 1
Chapter 4: The Basics: Literal Constants, Numbers, Strings, Variables, Identifier, Data types Chapter 5: Operators, Operator Precedence, Expressions
Chapter 6: Control flow: If, while, for, break, continue statements
Chapter 7: Functions: Defining a function, function parameters, local variables, default arguments, keywords, return statement, Doc-strings
Chapter 8: Modules: using system modules, import statements, creating modules
Chapter 9: Data Structures: Lists, tuples, sequences.
Chapter 10: Writing a python script
Chapter 12: Files: Input and output using file and pickle module
Chapter 13: Exceptions: Errors, Try-except statement, raising exceptions, try-finally statement

Module 2

(Text Book 2)

Chapter 6: Roots of Nonlinear Equations: Evaluation of Polynomials, Bisection method, Newton-Raphson Method. (Sections 6.5, 6.6 and 6.8)

Chapter 7: Direct Solution of Linear Equations: Solution by elimination, Gauss Elimination method, Gauss Elimination with Pivoting, Triangular Factorisation method (Dolitle Algorithm). (Sections 7.3, 7.4, 7.5 and 7.7)
Chapter 8: Iterative Solution of Linear Equations: Jacobi Iteration method, Gauss-Seidel method. (Sections 8.2 and 8.3)

Module 3

(Text Book 2)

Chapter 9: Curve Fitting-Interpolation: Lagrange Interpolation Polynomial, Newton Interpolation Polynomial, Divided Difference Table, Interpolation with Equidistant points.(Sections 9.4, 9.5, 9.6 and 9.7)
Chapter 11: Numerical Differentiation: Differentiating Continuous functions, Differentiating Tabulated functions. (Sections 11.2 and 11.3)
Chapter 12: Numerical Integration: Trapezoidal Rule, Simpson's 1/3 rule. (Sections 12.3 and 12.4)
Chapter 13: Numerical Solution of Ordinary Differential Equations: Euler's Method, RungKutta method (Order 4) (Sections 13.3 and 13.6).
Chapter 14: Eigenvalue problems: Polynomial Method, Power method. (Sections 14.5 and 14.6)

PRACTICAL PART

The following programs in Python have to be done on a computer and a record of algorithm, Printout of the program and printout of solution as shown by the computer for each program should be maintained. These should be bound together and submitted to the examiners at the time of practical examination.

Sample Programs (Recommended)

GCD of two numbers
To Check an integer prime
Evaluation of Totient Function
Writing of Fibonacci sequence
Listing of prime numbers
Average and maximum of a set of numbers
Programs (Compulsory)

Part A

Lagrange Interpolation
Newton's Interpolation
Bisection Method
Newton-Raphson Method
Numerical Differentiation of continuous function
Numerical Differentiation of tabulated function
Trapezoidal rule of Integration
Simpson's rule of Integration

Part B

Euler's method
Runge - Kutta method of order 4
Gauss elimination with pivoting
Runge - Kutta method of order 4
Gauss - Seidal iteration
Eigen value evaluation
Triangular Factorisation

REFERENCES

SD Conte and Carl De Boor : Elementary Numerical Analysis (An algorithmic approach) 3rd edition, McGraw-Hill, New Delhi
K. Sankara Rao : Numerical Methods for Scientists and Engineers - Prentice Hall of India, New Delhi.

Carl E Froberg : Introduction to Numerical Analysis, Addison Wesley Pub Co, 2nd Edition
Knuth D.E. : The Art of Computer Programming: Fundamental Algorithms(Volume I), Addison Wesley, Narosa Publication, New Delhi.

Python Programming, wikibooks contributors
Programming Python, Mark Lutz,
Python 3 Object Oriented Programming, Dusty Philips, PACKT Open source Publishing
Python Programming Fundamentals, Kent D Lee, Springer
Learning to Program Using Python, Cody Jackson, Kindle Edition
Online reading http://pythonbooks.revolunet.com/

